Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. A. Milyutin, N. N. Nikul’chenkov

FEATURES OF FABRICATING Fe-Ga–BAKELITE MAGNETOSTRICTIVE COMPOSITES

DOI: 10.17804/2410-9908.2024.6.008-017

Magnetostrictive metal-organic composites are an important class of materials for various electrical engineering applications. Fe-Ga alloy is one of the main materials used as a basis for such composites. Epoxy resin is generally used as the organic matrix. The problem of these composites is the extremely low temperature stability of their properties due to softening of the resin at elevated temperatures. This paper is the first to propose using Bakelite, a widespread organic compound based on phenol-formaldehyde resin, to create composites. Composites based on Fe-Ga powder with the addition of 5 wt% of Bakelite were produced by cold pressing at different pressures. Besides, the effect of powder annealing after milling in a ball mill on the structure and properties of the composites is studied. It is shown that the composite made with the same parameters from the annealed powder has a significantly higher magnetostriction.

Acknowledgement: The study was assigned by the Russian Ministry of Science and Higher Education (code Mag-net, No. 122021000034-9).

Keywords: metal-organic composites, magnetostrictive composites, Fe-Ga alloy, magnetostriction

References:

  1. Elhajjar, R., Law, C.-T., and Pegoretti, A. Magnetostrictive polymer composites: recent advances in materials, structures and properties. Progress in Materials Science, 2018, 97, 204–229. DOI: 10.1016/j.pmatsci.2018.02.005.
  2. Dong, X., Qi, M., Guan, X., and Ou, J. Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: enhanced uniform magnetostrictive and mechanical properties using a dry process. Journal of Magnetism and Magnetic Materials, 2011, 323 (3–4), 351–355. DOI: 10.1016/j.jmmm.2010.09.040.
  3. Duenas, T.A. and Carman, G.P. Large magnetostrictive response of Terfenol-D resin composites (invited). Journal of Applied Physics, 2000, 87 (9), 4696–4701. DOI: 10.1063/1.373133.
  4. Yang, Z.Z., Li, J., Zhou, Z., Gong, J., Bao, X., and Gao, X. Recent advances in magnetostrictive Tb–Dy–Fe alloys. Metals, 2022, 12 (2), 341. DOI: 10.3390/met12020341.
  5. Na, S.-M., Park, J.-J., Lee, S., Jeong, S.-Y., and Flatau, A.B. Magnetic and structural anisotropic properties of magnetostrictive Fe–Ga flake particles and their epoxy-bonded composites. Materials Letters, 2018, 213, 326–330. DOI: 10.1016/j.matlet.2017.11.052.
  6. Pradhan, G., Celegato, F., Barrera, G., Olivetti, E.S., Coisson, M., Hajduček, J., Arregi, J.A., Čelko, L., Uhlíř, V., Rizzi, P., and Tiberto, P. Magnetic properties of FeGa/Kapton for flexible electronics. Scientific Reports, 2022, 12 (1), 17503. DOI: 10.1038/s41598-022-21589-3.
  7. Zhao, X., Tian, X., Yao, Z., Zhao, L., Wang, R., Yan, J., and Liu, X. Flexible Pr‐doped Fe–Ga composite materials: preparation, microstructure, and magnetostrictive properties. Advanced Engineering Materials, 2020, 22 (12), 2000080. DOI: 10.1002/adem.202000080.
  8. Kiseleva, T.Yu., Zholudev, S.I., Novakova, A.A., Gendler, T.S., Ilyinykh, I.A., Smarzhevskaya, A.I., Anufriev, Yu., and Grigorieva, T.F. Magnetodeformational anisotropy of FeGa/PU hybrid nanocomposite via particle concentration and spatial orientation. Solid State Phenomena, 2015, 233–234, 607–610. DOI: 10.4028/www.scientific.net/SSP.233-234.607.
  9. Kiseleva, T., Zholudev, S., Novakova, A., and Grigoryeva, T. The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains. Composite Structures, 2016, 138, 12–16. DOI: 10.1016/j.compstruct.2015.11.030.
  10. Lin, J., Yang, Q., Wen, X., Cai, Z.-Q., Pi, P., Zheng, D.-F., Cheng, J., and Yang, Z. Preparation, characterization, and properties of novel bisphenol-A type novolac epoxy-polyurethane polymer with high thermal stability. High Performance Polymers, 2011, 23, 394–402.
  11. Kim, H.G. and Ryu, J.H. The change of physical properties of epoxy molding compound according to the change of softening point of ο-cresol novolac epoxy resin. Journal of the Korean Chemical Society, 1996, 40 (1), 81–86.
  12. Aryani, L., Bhakti, B.S., Mubarok, A.R., Septiyani, A., Mulyani, R.H., Sudrajat, N., and Dedi, D. The effect of bakelite binders on magnetic properties and hardness values of MQP-type bonded NdFeB magnets. Metalurgi, 2023, 38 (2), 49–56. DOI: 10.55981/metalurgi.2023.718.
  13. Thepsuwan, U., Intiya, W., Sa-Nguanthammarong, P., Sae-oui, P., Sirisinha, C., and Thaptong, P. Reinforcement of bakelite moulding powder in acrylonitrile butadiene rubber (NBR): in comparison with cashew nut oil modified phenolic resin. Scientific Review, 2020, 6 (4), 28–35. DOI: 10.32861/sr.64.28.35. URL: https://arpgweb.com/journal/journal/10
  14. Mahapatra, P.M., Kumar, S., Mishra, P., and Panda, A.K. Effect of different thermoplastics on the thermal degradation behavior, kinetics, and thermodynamics of discarded bakelite. Environmental Science and Pollution Research, 2023, 31, 38788–38800. DOI: 10.1007/s11356-023-25953-2.
  15. Milyutin, V.A. and Gervasieva, I.V. Application of the instrumented nanoindentation method to evaluating the behavior of the mechanical properties of a Fe–Ga alloy with increasing gallium content. Diagnostics, Resource and Mechanics of materials and structures, 2018, 6, 90–99. DOI: 10.17804/2410-9908.2018.6.090-099. Available at: http://dream-journal.org/issues/2018-6/2018-6_227.html
  16. Na, S.M., Suh, S.J., Shin, K.H., Lee, Y.S., and Lim S.H. Magnetostrictive properties of polymer-bonded Fe–Co based alloy composites. Journal of Applied Physics, 2003, 93 (10), 8501–8503. DOI: 10.1063/1.1543869.
  17. Dong, X., Ou, J., Guan, X., and Qi, M. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance. Journal of Magnetism and Magnetic Materials, 2010, 322 (22), 3648–3652. DOI: 10.1016/j.jmmm.2010.07.015.
  18. Dong, X., Qi, M., Guan, X., Li, J., and Ou, J. Magnetostrictive properties of titanate coupling agent treated Terfenol-D composites. Journal of Magnetism and Magnetic Materials, 2012, 324 (6), 1205–1208. DOI: 10.1016/j.jmmm.2011.11.010.
  19. Mudivarthi, C., Na, S.-M., Schaefer, R., Laver, M., Wuttig, M., and Flatau, A.B. Magnetic domain observations in Fe–Ga alloys. Journal of Magnetism and Magnetic Materials, 2010, 322 (14), 2023–2026. DOI: 10.1016/j.jmmm.2010.01.027.
  20. Mansouri, Y., Cheverikin, V.V., Palacheva, V.V., Koshmin, A.N., Aleshchenko, A.S., Astakhov, V.A., Dementeva, O.Yu., Milyutin, V.A., and Golovin, I.S. Texture and magnetostriction in warm rolled and recrystallized Fe–Ga alloy. Physics of Metals and Metallography, 2021, 122 (4), 389–395. DOI: 10.1134/S0031918X21040062.

В. А. Милютин, Н. Н. Никульченков

ОСОБЕННОСТИ ИЗГОТОВЛЕНИЯ МАГНИТОСТРИКЦИОННЫХ КОМПОЗИТОВ «Fe–Ga – БАКЕЛИТ»

Магнитострикционные металлоорганические композиты – важный класс материалов для различных электротехнических приложений. Сплав Fe–Ga – один из основных материалов, используемых в основе таких композитов. В качестве органической матрицы обычно используется эпоксидная смола. Проблемой таких композитов является крайне низкая температурная стабильность свойств из-за размягчения смолы при повышенных температурах. В данной работе впервые предложено использовать для создания композитов широко распространенное органическое соединение на основе фенолформальдегидной смолы – бакелит. Методом холодного прессования при различном давлении были изготовлены композиты на основе порошка Fe–Ga с добавлением 5 масс. % бакелита. Кроме того, реализовано исследование по влиянию отжига порошка после размола в шаровой мельнице на структуру и свойства композитов. Показано, что композит, изготовленный при тех же параметрах из отожженного порошка, обладает существенно более высокой магнитострикцией.

Благодарность: Работа выполнена в рамках государственного задания Министерства науки и высше-го образования Российской Федерации (шифр «Магнит», номер 122021000034-9).

Ключевые слова: металл-органические композиты, магнитострикционные композиты, сплав Fe-Ga, магни-тострикция

Библиография:

  1. Elhajjar R., Law C.-T., Pegoretti A. Magnetostrictive polymer composites: recent advances in materials, structures and properties // Progress in Materials Science. – 2018. – Vol. 97. – P. 204–229. – DOI: 10.1016/j.pmatsci.2018.02.005.
  2. Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: enhanced uniform magnetostrictive and mechanical properties using a dry process / X. Dong, M. Qi, X. Guan, J. Ou // Journal of Magnetism and Magnetic Materials. – 2011. – Vol. 323 (3–4). – P. 351–355. – DOI: 10.1016/j.jmmm.2010.09.040.
  3. Duenas T. A., Carman G. P. Large magnetostrictive response of Terfenol-D resin composites (invited) // Journal of Applied Physics. – 2000. – Vol. 87 (9). – P. 4696–4701. – DOI: 10.1063/1.373133.
  4. Recent advances in magnetostrictive Tb–Dy–Fe alloys / Z. Yang Z., J. Li, Z. Zhou, J. Gong, X. Bao, X. Gao // Metals. – 2022. – Vol. 12 (2). – P. 341. – DOI: 10.3390/met12020341.
  5. Magnetic and structural anisotropic properties of magnetostrictive Fe–Ga flake particles and their epoxy-bonded composites / S.-M. Na, J.-J. Park, S. Lee, S.-Y. Jeong, A. B. Flatau // Materials Letters. – 2018. – Vol. 213. – P. 326–330. – DOI: 10.1016/j.matlet.2017.11.052.
  6. Magnetic properties of FeGa/Kapton for flexible electronics / G. Pradhan, F. Celegato, G. Barrera, E. S. Olivetti, M. Coisson, J. Hajduček, J. A. Arregi, L. Čelko, V. Uhlíř, P. Rizzi, P. Tiberto // Scientific Reports. – 2022. – Vol. 12 (1). – P. 17503. – DOI: 10.1038/s41598-022-21589-3.
  7. Flexible Pr‐doped Fe–Ga composite materials: preparation, microstructure, and magnetostrictive properties / X. Zhao, X. Tian, Z. Yao, L. Zhao, R. Wang, J. Yan, X. Liu // Advanced Engineering Materials. – 2020. – Vol. 22 (12). – P. 2000080. – DOI: 10.1002/adem.202000080.
  8. Magnetodeformational anisotropy of FeGa/PU hybrid nanocomposite via particle concentration and spatial orientation / T. Yu. Kiseleva, S. I. Zholudev, A. A. Novakova, T. S. Gendler, I. A. Ilyinych, A. I. Smarzhevskaya, Yu. Anufriev, T. F. Grigorieva // Solid State Phenomena. – 2015. – Vol. 233–234. – P. 607–610. – DOI: 10.4028/www.scientific.net/SSP.233-234.607.
  9. The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains / T. Kiseleva, S. Zholudev, A. Novakova, T. Grigoryeva // Composite Structures. – 2016. – Vol. 138. – P. 12–16. – DOI: 10.1016/j.compstruct.2015.11.030.
  10. Preparation, characterization, and properties of novel bisphenol-A type novolac epoxy-polyurethane polymer with high thermal stability / J. Lin, Q. Yang, X. Wen, Z.-Q. Cai, P. Pi, D.-F. Zheng, J. Cheng, Z. Yang // High Performance Polymers. – 2011. – Vol. 23 (5). – P. 394–402.
  11. Kim H. G., Ryu J. H. The change of physical properties of epoxy molding compound according to the change of softening point of ο-cresol novolac epoxy resin // J. Korean Chem. Soc. – 1996. – Vol. 40 (1). – P. 81–86.
  12. The effect of bakelite binders on magnetic properties and hardness values of MQP-type bonded NdFeB magnets / L. Aryani, B. S. Bhakti, A. R. Mubarok, A. Septiyani, R. H. Mulyani, N. Sudrajat, D. Dedi // Metalurgi. – 2023. – Vol. 38 (2). – P. 49–56. – DOI: 10.55981/metalurgi.2023.718.
  13. Reinforcement of bakelite moulding powder in acrylonitrile butadiene rubber (NBR): in comparison with cashew nut oil modified phenolic resin / U. Thepsuwan, W. Intiya, P. Sa-Nguanthammarong, P. Sae-oui, C. Sirisinha, P. Thaptong // Scientific Review. – 2020. – Vol. 6 (4). – P. 28–35. – DOI: 10.32861/sr.64.28.35.
  14. Effect of different thermoplastics on the thermal degradation behavior, kinetics, and thermodynamics of discarded bakelite / P. M. Mahapatra, S. Kumar, P. Mishra, A. K. Panda // Environmental Science and Pollution Research. – 2023. – Vol. 31. – P. 38788–38800. – DOI: 10.1007/s11356-023-25953-2.
  15. Milyutin V. A., Gervasieva I. V. Application of the instrumented nanoindentation method to evaluating the behavior of the mechanical properties of a Fe–Ga alloy with increasing gallium content // Diagnostics, Resource and Mechanics of materials and structures. – 2018. – Iss. 6. – P. 90–99. – DOI: 10.17804/2410-9908.2018.6.090-099. – URL: http://dream-journal.org/issues/2018-6/2018-6_227.html
  16. Magnetostrictive properties of polymer-bonded Fe–Co based alloy composites / S. M. Na, S. J. Suh, K. H. Shin, Y. S. Lee, S. H. Lim // Journal of Applied Physics. – 2003. – Vol. 93 (10). – P. 8501–8503. – DOI: 10.1063/1.1543869.
  17. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance / X. Dong, J. Ou, X. Guan, M. Qi // Journal of Magnetism and Magnetic Materials. – 2010. – Vol. 322 (22). – P. 3648–3652. – DOI: 10.1016/j.jmmm.2010.07.015.
  18. Magnetostrictive properties of titanate coupling agent treated Terfenol-D composites / X. Dong, M. Qi, X. Guan, J. Li, J. Ou // Journal of Magnetism and Magnetic Materials. – 2012. – Vol. 324 (6). – P. 1205–1208. – DOI: 10.1016/j.jmmm.2011.11.010.
  19. Magnetic domain observations in Fe–Ga alloys / C. Mudivarthi, S.-M. Na, R. Schaefer, M. Laver, M. Wuttig, A. B. Flatau // Journal of Magnetism and Magnetic Materials. – 2010. – Vol. 322 (14). – P. 2023–2026. – DOI: 10.1016/j.jmmm.2010.01.027.
  20. Texture and magnetostriction in warm rolled and recrystallized Fe–Ga alloy / Y. Mansouri, V. V. Cheverikin, V. V. Palacheva, A. N. Koshmin, A. S. Aleshchenko, V. A. Astakhov, O. Yu. Dementeva, V. A. Milyutin, I. S. Golovin // Physics of Metals and Metallography. – 2021. – Vol. 122 (4). – P. 389–395. – DOI: 10.1134/S0031918X21040062.


PDF      

Библиографическая ссылка на статью

Milyutin V. A., Nikul’chenkov N. N. Features of Fabricating Fe-Ga–bakelite Magnetostrictive Composites // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 8-17. -
DOI: 10.17804/2410-9908.2024.6.008-017. -
URL: http://dream-journal.org/issues/content/article_471.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru