Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 6

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. A. Milytun, I. V. Gervasyeva

APPLICATION OF THE INSTRUMENTED NANOINDENTATION METHOD TO EVALUATING THE BEHAVIOR OF THE MECHANICAL PROPERTIES OF A Fe-Ga ALLOY WITH INCREASING GALLIUM CONTENT

DOI: 10.17804/2410-9908.2018.6.090-099

Five Fe-Ga samples with gallium content ranging from 13.2 to 19.7 at. % are studied in this paper. X-ray phase analysis is carried out for the certification of the phase composition of the initial samples; in order to find differences in the chemical composition inside the grains and in the near-border areas, elementary analysis of individual structure sections is carried out. It is demonstrated that in this alloy there is a distinct brittle fracture. To study the mechanical properties and to reveal their behavior with increasing Ga content, it is proposed to use a nanoindentation system. An increase in microhardness and a decrease in the plastic work of indentation with increasing Ga content are shown.

Acknowledgements: The work was performed within the state assignment from FASO Russia (Magnet, No. АААА-А18-118020290129-5) and partially supported by the RFBR (project No. 18-03-00623) and UB RAS Complex Program No. 18-10-2-5. The experimental results were obtained with the use of the equipment of the Testing Center of Nanotechnology and Advanced Materials collective use center.

Keywords: Fe-Ga alloy, instrumented microindentation, fracture

Bibliography:

  1. Clark A.E., Restorff J.B., Wun-Fogle M., Lograsso T.A., Schlagel D.L. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Transactions on Magnetics, 2000, vol. 36, pp. 3238–3240. DOI: 10.1109/20.908752.
  2. Xing Q., Du Y., McQueeney R.J., Lograsso T.A. Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior. Acta Materialia, 2008, vol. 56, pp. 4536–4546. DOI: 10.1016/j.actamat.2008.05.011
  3. Na S., Flatau A.B. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011) [100] orientation. Scripta Materialia, 2012, vol. 66, pp. 307–310. DOI: 10.1016/j.scriptamat.2011.11.020.
  4. Clark A.E., Wun-Fogle M., Restorff J.B., Lograsso T.A. Magnetostrictive properties of galfenol alloys under compressive stress. Materials Transaction, 2002, vol. 43, pp. 881–886. DOI: 10.2320/matertrans.43.881.
  5. Kellogg R.A., Flatau A.B., Clark A.E., Wun-Fogle M., Lograsso T.A. Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe 0.81 Ga 0.19. J. Appl. Phys., 2002, vol. 91, pp. 7821–7823. DOI: 10.1063/1.1452216.
  6. Jayaraman T.V., Srisukhumbowornchai N., Guruswamy S., Free M.L. Corrosion studies of single crystals of iron–gallium alloys in aqueous environments. Corros. Sci., 2007, vol. 49, pp. 4015–4027. DOI: 10.1016/j.corsci.2007.05.010.
  7. Golovin I.S., Rivière A. Mechanisms of anelasticity in Fe-13Ga alloy. Intermetallics, 2011, vol. 19, pp. 453–459. DOI: 10.1016/j.intermet.2010.10.017.
  8. Golovin I.S. Anelasticity of Fe–Ga based alloys. Materials & Design, 2015, vol. 88, pp. 577–587. DOI: 10.1016/j.matdes.2015.08.160.
  9. Xing Q., Lograsso T.A. Effect of cooling rate on magnetoelasticity and short-range order in Fe-Ga alloys. Scripta Materialia, 2011, vol. 65, pp 359–362. DOI: 10.1016/j.scriptamat.2011.05.010.
  10. Li J.H., Gao X.X., Zhu J., Bao X.Q., Xia T., Zhang M.C. Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scripta Materialia, 2010, vol. 63, pp. 246–249. DOI: 10.1016/j.scriptamat.2010.03.068.
  11. Na S., Flatau A.B. Deformation behavior and magnetostriction of polycrystalline Fe-Ga-X (X=B, C, Mn, Mo, Nb, NbC) alloys. Journal of Applied Physics, 2008, vol. 103, pp. 07D304. DOI: 10.1063/1.2838772.
  12. Li J., Gao X., Zhu J., He C., Qiao J., Zhang W. M. Texture evolution and magnetostriction in rolled (Fe81Ga19) 99 Nb1 alloy. J. Alloys. Compd., 2009, vol. 476, pp. 529–533. DOI: 10.1016/j.jallcom.2008.09.087.
  13. Li J., Gao X., Zhu J., Li Jie, Zhang M. Ductility enhancement and magnetostriction of polycrystalline Fe-Ga based alloys. J. Alloys. Compd., 2009, vol. 484, pp. 203–206. DOI: 10.1016/j.jallcom.2009.03.008.
  14. Sun A.L., Liu J.H., Jiang C.B. Microstructural characteristics and in situ reinforcement in NbC-doped Fe81Ga19 magnetostrictive alloys. Materials & Design, 2015, vol. 88, pp. 1342–1346. DOI: 10.1016/j.matdes.2015.08.150.
  15. Takahashi T., Okazaki T., Furuya Y. Improvement in the mechanical strength of magnetostrictive (Fe-Ga-Al)-X-C (X = Zr, Nb and Mo) alloys by carbide precipitation. Scr. Mater., 2009, vol. 61, pp. 5–7. DOI: 10.1016/j.scriptamat.2008.12.032.
  16. Wu Y., Fang L., Meng C., Chen Y., Wang J., Liu J., Zhang T., Jiang C. Improved magneostriction and mechanical properties in dual-phase FeGa single crystal. Materials Research Letters, 2018, vol. 6, pp. 327–332. DOI: 10.1080/21663831.2018.1451403.
  17. Influence of Tb on structure and properties of Fe-19%Ga and Fe-27%Ga alloys / Golovin I.S., Balagurov E.M., Palacheva V.V., Emdadi A., Bobrikov I.A., Churyumov A.Y., Cheverikin V.V., Pozdniakov A.V., Mikhaylovskaya A.V., Golovin S.A. J. Alloys. Compd., 2016, vol. 707, pp. 51–56. DOI: 10.1016/j.jallcom.2016.09.151.
  18. Zhang M.C., Jiang H.L., Gao X.X., Zhu J., Zhou S.Z. Magnetostriction and microstructure of the melt-spun Fe 83 Ga 17 alloy. Journal of Applied Physics, 2006, vol. 99, pp. 023903. DOI: 10.1063/1.2164528.
  19. Liu G.D., Liu L.B., Liu Z.H., Zhang M., Chen J.L., Li J.Q., Wu G.H. Giant magnetostriction on Fe85Ga15 stacked ribbon samples. Appl. Phys. Lett., 2004, vol. 84, pp. 2124–2126. DOI:10.1063/1.1688452.
  20. Atulasimha J., Flatau A.B. A review of magnetostrictive iron–gallium alloys. Smart Mater. Struct., 2011, vol. 20, pp. 043001–043001. DOI: 10.1088/0964-1726/20/4/043001.
  21. Summers E.M., Lograsso T.A., Snodgrass J.D., Slaughter J.C. Magnetic and Mechanical Properties of Polycrystalline Galfenol. In: Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics: Proceedings, 2004, vol. 448. DOI: 10.1117/12.539781.
  22. Ikeda O., Kainuma R., Ohnuma I., Fukamichi K., Ishida K. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system. J. Alloys. Compd., 2002, vol. 347, pp. 198–205. DOI: 10.1016/S0925-8388(02)00791-0.
  23. Pineau A., Benzerga A.A., Pardoen T. Failure of metals I: Brittle and ductile fracture. Acta Materialia, 2016, vol. 107, pp. 424–483. DOI: 10.1016/j.actamat.2015.12.034.
  24. Khachaturyan A.G., Viehland D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: part I. decomposition and confined displacive transformation. Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2308–2316. DOI: 10.1007/s11661-007-9253-z.
  25. Bhattacharyya S., Jinschek J.R., Khachaturyan A., Cao H., Li J.F., Viehland D. Nanodispersed DO3-phase nanostructures observed in magnetostrictive Fe–19% Ga Galfenol alloys. Phys. Rev. B, 2008, vol. 77, pp. 104107. DOI: 10.1103/PhysRevB.77.104107.
  26. Cao H., Gehring P.M., Devreugd C.P., Rodriguez-Rivera J.A., Li J., Viehland D. Role of Nanoscale Precipitates on the Enhanced Magnetostriction of Heat-Treated Galfenol (Fe1-xGax) Alloys. Phys. Rev. Lett., 2009, vol. 102, pp. 127201. DOI: 10.1103/PhysRevLett.102.127201.
       

В. А. Милютин, И. В. Гервасьева

ИСПОЛЬЗОВАНИЕ МЕТОДА ИНСТРУМЕНТАЛЬНОГО НАНОИНДЕНТИРОВАНИЯ ДЛЯ ОЦЕНКИ ИЗМЕНЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ СПЛАВА FE-GA ПРИ УВЕЛИЧЕНИИ СОДЕРЖАНИЯ ГАЛЛИЯ

В работе исследованы 5 образцов сплава Fe-Ga с содержанием галлия от 13,2 до 19,7 ат. %. Для аттестации фазового состава образцов проведен рентгенофазовый анализ, а с целью установления различий по химическому составу в теле зерна и в приграничных областях проведен элементарный анализ отдельных участков структуры. Показано, что в данном сплаве имеет место ярко выраженный хрупкий излом. Для исследования механических свойств и установления характера их изменения при увеличении содержания Ga предложено использовать систему наноиндентирования. Показано увеличение микротвердости и уменьшение пластической работы индентирования по мере роста содержания галлия.

Благодарности: Работа выполнена в рамках государственного задания ФАНО России (тема «Магнит» № АААА-А18-118020290129-5 при частичной поддержке РФФИ (проект № 18-03-00623) и комплексной программы УрО РАН № 18-10-2-5. Экспериментальные результаты получены с использованием оборудования ЦКП «Ис-пытательный центр нанотехнологий и перспективных материалов»

Ключевые слова: сплав Fe-Ga, инструментальное микроиндентирование, излом

Библиография:

  1. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys / A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, D. L Schlagel // IEEE Transactions on Magnetics. – 2000. –Vol. 36. – P. 3238–3240. – DOI: 10.1109/20.908752.
  2. Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior / Q. Xing, Y. Du, R. J .McQueeney, T. A. Lograsso // Acta Materialia. – 2008. – Vol. 56. – P. 4536–4546. – DOI: 10.1016/j.actamat.2008.05.011.
  3. Na S., Flatau A. B. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011) [100] orientation // Scripta Materialia. – 2012. – Vol. 66. – P. 307–310. – DOI: 10.1016/j.scriptamat.2011.11.020.Magnetostrictive properties of galfenol alloys under compressive stress / A. E. Clark, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso // Materials Transaction. – 2002. – Vol. 43. – P. 881–886. – DOI: 10.2320/matertrans.43.881.
  4. Magnetostrictive properties of galfenol alloys under compressive stress / A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso // Materials Transaction. – 2002. – V. 43. – P. 881-886. – DOI: 10.2320/matertrans.43.881
  5. Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe 0.81 Ga 0.19 / R. A. Kellogg, A. B. Flatau, A. E. Clark, M. Wun-Fogle, T. A. Lograsso // J. Appl. Phys. – 2002. – Vol. 91. –P. 7821–7823. – DOI: 10.1063/1.1452216.
  6. Corrosion studies of single crystals of iron–gallium alloys in aqueous environments / T. V. Jayaraman, N. Srisukhumbowornchai, S. Guruswamy, M. L. Free // Corros. Sci. – 2007. – Vol. 49. – P. 4015–4027. – DOI: 10.1016/j.corsci.2007.05.010.
  7. Golovin I. S., Rivière A. Mechanisms of anelasticity in Fe-13Ga alloy // Intermetallics. – 2011. – Vol. 19. – P. 453–459. – DOI: 10.1016/j.intermet.2010.10.017.
  8. Golovin I. S. Anelasticity of Fe–Ga based alloys // Materials & Design. – 2015. – Vol. 88. – P. 577–587. – DOI: 10.1016/j.matdes.2015.08.160.
  9. Xing Q., Lograsso T. A. Effect of cooling rate on magnetoelasticity and short-range order in Fe-Ga alloys // Scripta Materialia. – 2011. – Vol. 65. – P. 359–362. – DOI: 10.1016/j.scriptamat.2011.05.010.
  10. Ductility, texture and large magnetostriction of Fe–Ga-based sheets / J.H. Li, X.X. Gao, J. Zhu, X.Q. Bao, T. Xia, M.C. Zhang // Scripta Materialia. – 2010. – V. 63. – P. 246–249. – DOI: 10.1016/j.scriptamat.2010.03.068Ductility, texture and large magnetostriction of Fe–Ga-based sheets / J. H. Li, X. X. Gao, J. Zhu, X. Q. Bao, T. Xia, M. C. Zhang // Scripta Materialia. – 2010. – Vol. 63. – P. 246–249. – DOI: 10.1016/j.scriptamat.2010.03.068.
  11. S. Na, A.B. Flatau. Deformation behavior and magnetostriction of polycrystalline Fe-Ga-X (X=B, C, Mn, Mo, Nb, NbC) alloys // Journal of Applied Physics. – 2008. – V. 103. – P. 07D304. – DOI: 10.1063/1.2838772Na S., Flatau A. B. Deformation behavior and magnetostriction of polycrystalline Fe-Ga-X (X=B, C, Mn, Mo, Nb, NbC) alloys // Journal of Applied Physics. – 2008. – Vol. 103. – P. 07D304. – DOI: 10.1063/1.2838772.
  12. Texture evolution and magnetostriction in rolled (Fe81Ga19) 99 Nb1 alloy / J. Li, X. Gao, J. Zhu, C. He, J. Qiao, W. M. Zhang // J. Alloys. Compd. – 2009. – Vol. 476. – P. 529–533. – DOI: 10.1016/j.jallcom.2008.09.087.
  13. Ductility enhancement and magnetostriction of polycrystalline Fe-Ga based alloys / J. Li, X. Gao, J. Zhu, Jie Li, M. Zhang // J. Alloys. Compd. – 2009. – Vol. 484. – P. 203–206. – DOI: 10.1016/j.jallcom.2009.03.008.
  14. Sun A. L., Liu J. H., Jiang C. B. Microstructural characteristics and in situ reinforcement in NbC-doped Fe81Ga19 magnetostrictive alloys // Materials & Design. – 2015. – Vol. 88. – P. 1342–1346. – DOI: 10.1016/j.matdes.2015.08.150.
  15. Takahashi T., Okazaki T., Furuya Y. Improvement in the mechanical strength of magnetostrictive (Fe-Ga-Al)-X-C (X = Zr, Nb and Mo) alloys by carbide precipitation // Scr. Mater. – 2009. – Vol. 61. – P. 5–7. – DOI: 10.1016/j.scriptamat.2008.12.032.
  16. Improved magneostriction and mechanical properties in dual-phase FeGa single crystal / Y. Wu, L. Fang, C. Meng, Y. Chen, J. Wang, J. Liu, T. Zhang, C. Jiang // Materials Research Letters. – 2018. – Vol. 6. – P. 327–332. – DOI: 10.1080/21663831.2018.1451403.
  17. Influence of Tb on structure and properties of Fe-19%Ga and Fe-27%Ga alloys / I. S. Golovin, E. M. Balagurov, V. V. Palacheva, A. Emdadi, I. A. Bobrikov, A. Y. Churyumov, V. V. Cheverikin, A. V. Pozdniakov, A. V. Mikhaylovskaya, S. A. Golovin // J. Alloys. Compd. – 2016. – Vol. 707. – P. 51–56. – DOI: 10.1016/j.jallcom.2016.09.151.
  18. Magnetostriction and microstructure of the melt-spun Fe 83 Ga 17 alloy / M. C. Zhang, H. L. Jiang, X. X. Gao, J. Zhu, S. Z. Zhou // Journal of Applied Physics. – 2006. – Vol. 99. – P. 023903. – DOI: 10.1063/1.2164528.
  19. Giant magnetostriction on Fe85Ga15 stacked ribbon samples / G. D. Liu, L. B. Liu, Z. H. Liu, M. Zhang, J. L. Chen, J. Q. Li, G. H. Wu // Appl. Phys. Lett. – 2004. – Vol. 84. – P. 2124–2126. – DOI: 10.1063/1.1688452.
  20. Atulasimha J., Flatau A. B. A review of magnetostrictive iron–gallium alloys // Smart Mater. Struct. – 2011. – Vol. 20. – P. 043001–043001. – DOI: 10.1088/0964-1726/20/4/043001.
  21. Magnetic and Mechanical Properties of Polycrystalline Galfenol / E. M. Summers, T. A. Lograsso, J. D. Snodgrass, J. C. Slaughter // Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics : proceedings. – 2004. – Vol. 448. – DOI: 10.1117/12.539781.
  22. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system / O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, K. Ishida // J. Alloys. Compd. – 2002. – Vol. 347. – P. 198–205. – DOI: 10.1016/S0925-8388(02)00791-0.
  23. Pineau A., Benzerga A. A., Pardoen T. Failure of metals I: Brittle and ductile fracture // Acta Materialia. – 2016. – Vol. 107. – P. 424–483. – DOI: 10.1016/j.actamat.2015.12.034.
  24. Khachaturyan A. G., Viehland D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: part I. decomposition and confined displacive transformation // Metall. Mater. Trans. A. – 2007. – Vol. 38A – P. 2308–2316. – DOI: 10.1007/s11661-007-9253-z.
  25. Nanodispersed DO3-phase nanostructures observed in magnetostrictive Fe–19% Ga Galfenol alloys / S. Bhattacharyya, J. R. Jinschek, A. Khachaturyan, H. Cao, J. F. Li, D. Viehland // Phys. Rev. B. – 2008. – Vol. 77. – P. 104107. – DOI: 10.1103/PhysRevB.77.104107.
  26. Role of Nanoscale Precipitates on the Enhanced Magnetostriction of Heat-Treated Galfenol (Fe1-xGax) Alloys / H. Cao, P. M. Gehring, C. P. Devreugd, J. A. Rodriguez-Rivera, J. Li, D. Viehland // Phys. Rev. Lett. – 2009. – Vol. 102. – P. 127201. – DOI: 10.1103/PhysRevLett.102.127201.
       
PDF      

Библиографическая ссылка на статью

Milytun V. A., Gervasyeva I. V. Application of the Instrumented Nanoindentation Method to Evaluating the Behavior of the Mechanical Properties of a Fe-Ga Alloy with Increasing Gallium Content // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 6. - P. 90-99. -
DOI: 10.17804/2410-9908.2018.6.090-099. -
URL: http://dream-journal.org/issues/2018-6/2018-6_227.html
(accessed: 29.03.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru