Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

D. I. Davydov, S. V. Afanasiev, V. P. Pilyugin, D. A. Shishkin,  P. B. Terent'ev

STRUCTURE AND MAGNETIC PROPERTIES OF A NICKEL-BASED SUPERALLOY AFTER DEFORMATION

DOI: 10.17804/2410-9908.2016.1.016-028

The structure and magnetic properties of ChS-70 nickel-based superalloy samples have been compared after different types of deformation. The different behavior of the magnetic properties is governed by the difference in the structure resulting from deformation. High-temperature tensile tests and shear deformation under high pressure have been performed for ChS-70 alloy samples. Samples cut from different parts of a turbine blade after operation under forced conditions have been examined. The deformation of the Chs-70 alloy under operation increases magnetic susceptibility, which is due to the formation of complex defects of the crystalline structure inside the intermetallic particles (Ni3Al). Dynamical recovery during the high-temperature tensile tests leads to relaxation, elimination of crystal lattice defects, and the magnetic properties remain unchanged. Shear under high pressure causes a nanocrystalline structure in the alloy, a significant decrease in the degree of the long-range order in the intermetallic phase and the preservation of the paramagnetic state.

Keywords: structure, deformation, magnetic properties, stacking faults, nickel-based alloy

References:

  1. Stoloff N.S. Physical and mechanical metallurgy of Ni3Al and its alloys. International Materials Reviews, 1989, vol. 34, iss. 4, pp. 153–183.
  2. Deryagin A.I., Zavalishin V.A., Saragadze V.V., Efros B.M. Formation of nanosized ferro-magnetic phases during plastic deformation and subsequent annealing of stable austenitic steels. Russian Journal of Nondestructive Testing, 2007, vol. 43, iss. 7, pp. 427–435. DOI: 10.1134/S1061830907070029.
  3. Rhee Joo Yull, Kudryavtsev Y.V., Lee Y.P. Optical, magneto-optical, and magnetic properties of stoichiometric and off-stoichiometric γ’-phase Ni3Al alloys. Physical Review B, 2003, vol. 68, iss. 4, pp. 045104-1–045104-8. DOI: 10.1103/PhysRevB.68.045104.
  4. Idzikowski Bogdan, Kudryavtsev Yuri V., Hyun Young-Hoon, Lee Young-Pak, Klenke Jens. Magnetic effects of structural disorder in the itinerant ferromagnet Ni3Al studied by magnetic and neutron methods on stoichiometric and off-stoichiometric samples. Journal of Alloys and Compounds, 2006, vol. 423, iss. 1–2, pp. 267–273. DOI: 10.1016/j.jallcom.2006.01.088.
  5. Zeng Q., Baker I. The effect of local versus bulk disorder on the magnetic behavior of stoichiometric Ni3Al. Intermetallics, 2007, vol. 15, iss. 3, pp. 419–427. DOI: 10.1016/j.intermet.2006.08.010.
  6. Umakoshi Y., Hiroyuki Y., Toshifumi Y. Quantitative analysis of γ (gamma) precipitate in cyclically deformed Ni3(Al, Ti) single crystals using magnetic technique. Proc. MRS Fall Meeting, November 28–December 3, 2004, Boston, USA, 2004, vol. 842, pp. 2.3.1–2.3.6.
  7. Stepanova N.N., Davydov D.I., Nichipuruk A.P., Rigmant M.B., Kazantseva N.V., Vinogradova N.I., Pirogov A.N., Romanov E.P. The structure and magnetic properties of a heat-resistant nickel-base alloy after a high-temperature deformation. The Physics of Metals and Metallography, 2011, vol. 112, no. 3, pp. 309–317. DOI: 10.1134/S0031918X11030288.
  8. Ray A.K., Singh S.R., Swaminathan J., Roy P.K., Tiwari Y.N., Bose S.C., Ghosh R.N. Structure property correlation study of a service exposed first stage turbine blade in a power plant. Materials Science and Engineering: A, 2006, vol. 419, iss. 1–2, pp. 225–232. DOI: 10.1016/j.msea.2005.12.030.
  9. Levit V.I., Smirnov M.A. Vysokotemperaturnaya termomekhanicheskaya obrabotka austenitnykh stalei i splavov [High-Temperature Thermomechanical Treatment of Austenitic Steels and Alloys]. Chelyabinsk, CHGTU Publ., 1995, 276 p. (In Russian).
  10. Skudnov V.A., Tarasenko Yu.P., Berdnik О.В. Selection of optimal operating temperature for ChS70-VI and ChS88U-VI nickel-based alloys in terms of synergetics. Tekhnologiya metallov, 2008, no. 12, pp. 16–20. (In Russian).
  11. Korznikov A.V., Tram G., Dimitrov O., Korznikova G.F., Idrisova S.R., Pakiela Z. The mechanism of nanocrystalline structure formation in Ni3Al during severe plastic deformation. Acta Materialia, 2001, vol. 49, iss. 4, pp. 663–671. DOI: 10.1016/S1359-6454(00)00345-1.
  12. Tyumentsev A.N., Tretyak M.V., Pinzhin Yu.P., Korotaev A.D., Valiev R.Z. Evolution of defect substructure in the Ni3Al alloy in the course of severe plastic deformation by torsion under pressure. Fizika Metallov i Metallovedenie, 2000, vol. 90, iss. 5, pp. 44–54. (In Russian).
  13. Kazantseva N.V., Pilyugin V.P., Zavalishin V.A., Stepanova N.N. Effect of a nanosized state on the magnetic properties of Ni3(Al, Fe) and Ni3(Al, Со). The Physics of Metals and Metallography, 2014, vol. 115, iss. 3, pp. 243–247. DOI: 10.1134/S0031918X1403005.

Д. И. Давыдов, С. В. Афанасьев, В. П. Пилюгин, Д. А. Шишкин,  П. Б. Терентьев

СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ПОСЛЕ ДЕФОРМАЦИИ


Проведено сравнение структуры и магнитных свойств образцов жаропрочных никелевых сплавов ЧС-70 после различных видов деформации. Различный характер изменения магнитных свойств определяется различием структуры, сформированной в результате деформации.
Для ЧС-70 проведены высокотемпературные испытания на растяжение; деформация сдвигом под высоким давлением, исследованы образцы, вырезанные из разных частей турбинной лопатки после эксплуатации по форсированному режиму. Деформация сплава ЧС-70 в ходе его эксплуатации приводит к возрастанию магнитной восприимчивости, связаному с формированием комплексов дефектов кристаллического строения внутри частиц интерметаллидной фазы (Ni3Al). Динамический возврат при высокотемпературных испытаниях на растяжение приводит к релаксации, устранению дефектов кристаллической решетки, и магнитные свойства сплава не изменяются. Сдвиг под высоким давлением приводит к образованию в сплаве нанокристаллической структуры, к значительному уменьшению степени дальнего порядка интерметаллической фазы и сохранению парамагнитного состояния.

Ключевые слова: структура, деформация, магнитные свойства, дефекты упаковки, никелевые сплавы

Библиография:

  1. Stoloff N. S. Physical and mechanical metallurgy of Ni3Al and its alloys // International Materials Reviews. – 1989. – Vol. 34, iss. 4. – P. 153–184.
  2. Formation of nanosized ferromagnetic phases during plastic deformation and subsequent annealing of stable austenitic steels / A. I. Deryagin, V. A. Zavalishin, V. V. Saragadze, B. M. Efros // Russian Journal of Nondestructive Testing. – 2007. – Vol. 43, iss. 7. – P. 427–435. – DOI: 10.1134/S1061830907070029.
  3. Rhee Joo Yull, Kudryavtsev Y. V., Lee Y. P. Optical, magneto-optical, and magnetic properties of stoichiometric and off-stoichiometric γ’-phase Ni3Al alloys // Physical Review B. – 2003. – Vol. 68, iss. 4. – P. 045104-1–045104-8. – DOI: 10.1103/PhysRevB.68.045104.
  4. Magnetic effects of structural disorder in the itinerant ferromagnet Ni3Al studied by magnetic and neutron methods on stoichiometric and off-stoichiometric samples / B. Idzikowski, Y. V. Kudryavtsev, Y. H. Hyun , Y. P. Lee, J. Klenke // Journal of Alloys and Compounds. – 2006. Vol. 423, iss. 1–2. – P. 267–273. – DOI: 10.1016/j.jallcom.2006.01.088.
  5. Zeng Q., Baker I. The effect of local versus bulk disorder on the magnetic behavior of stoichiometric Ni3Al // Intermetallics. – 2007. – Vol. 15, iss. 3. – P. 419–427. – DOI: 10.1016/j.intermet.2006.08.010.
  6. Umakoshi Y., Hiroyuki Y., Toshifumi Y. Quantitative analysis of γ (gamma) precipitate in cyclically deformed Ni3(Al,Ti) single crystals using magnetic technique // Proc. MRS Fall Meeting, Boston, USA, November 28–December 3, 2004. – 2004. – Vol. 842. – P. 2.3.1–2.3.6.
  7. The structure and magnetic properties of a heat-resistant nickel-base alloy after a high temperature deformation / N. N. Stepanova, D. I. Davydov, A. P. Nichipuruk, M. B. Rigmant, N. V. Kazantseva, N. I. Vinogradova, A. N. Pirogov, E. P. Romanov // The Physics of Metals and Metallography. – 2011. – Vol. 112, iss. 3. – P. 309–317. – DOI: 10.1134/S0031918X11030288.
  8. Structure property correlation study of a service exposed first stage turbine blade in a power plant / A. K. Ray, S. R. Singh, J. Swaminathan, P. K. Roy, Y. N. Tiwari, S. C. Bose, R. N. Ghosh // Materials Science and Engineering: A. – 2006. – Vol. 419, iss. 1–2. – P. 225–232. – DOI: 10.1016/j.msea.2005.12.030.
  9. Левит В. И., Смирнов М. А. Высокотемпературная термомеханическая обработка аустенитных сталей и сплавов. – Челябинск : ЧГТУ, 1995. – 276 с.
  10. Скуднов В. А., Тарасенко Ю. П., Бердник О. Б. Выбор оптимальной рабочей температуры никелевых сплавов ЧС70-ВИ и ЧС88У-ВИ с позиции синергетики // Технология металлов. – 2008. – № 12. – С. 16–20.
  11. The mechanism of nanocrystalline structure formation in Ni3Al during severe plastic deformation / A. V. Korznikov, G. Tram, O. Dimitrov, G. F. Korznikova, S. R. Idrisova, Z. Pakiela // Acta Materialia. – 2001. – Vol. 49, iss. 4. – P. 663–671. – DOI: 10.1016/S1359-6454(00)00345-1.
  12. Evolution of defect substructure in the Ni3Al alloy in the course of severe plastic deformation by torsion under pressure / A. N. Tyumentsev, M. V. Tretyak, Yu. P. Pinzhin, A. D. Korotaev, R. Z. Valiev // Fizika Metallov i Metallovedenie. – 2000. – Vol. 90, iss. 5. – P. 44–54.
  13. Effect of a nanosized state on the magnetic properties of Ni3(Al, Fe) and Ni3(Al, Со) / N. V. Kazantseva, V. P. Pilyugin, V. A. Zavalishin, N. N. Stepanova // The Physics of Metals and Metallography. – 2014. – Vol. 115, iss. 3. – P. 243–247. – DOI: 10.1134/S0031918X14030053.
                 
PDF      

Библиографическая ссылка на статью

Structure and Magnetic Properties of a Nickel-Based Superalloy after Deformation / D. I. Davydov, S. V. Afanasiev, V. P. Pilyugin, D. A. Shishkin, P. B. Terent'ev // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 1. - P. 16-28. -
DOI: 10.17804/2410-9908.2016.1.016-028. -
URL: http://dream-journal.org/issues/content/article_70.html
(accessed: 21.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru