Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2025 Выпуск 2
 
2025 Выпуск 1
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

L. S. Goruleva, I. I. Obabkov, and E. Yu. Prosviryakov

EXACT SOLUTIONS TO THE OBERBECK–BOUSSINESQ EQUATIONS FOR DESCRIBING MULTILAYER FLUID FLOWS IN THE STOKES APPROXIMATION

DOI: 10.17804/2410-9908.2025.2.006-027

The flow of viscous incompressible fluids in engineering devices, in technological and natural processes is characterized by the stratification of hydrodynamic fields. Conventionally, the stratification of the velocity field and the pressure field is studied for isothermal flows. If fluid motion occurs in a thermal field, temperature is an important characteristic of an incompressible fluid. Convective fluid flow has a very complex topological structure of hydrodynamic fields due to the temperature dependence of density. As is known, in the description of convection in the Boussinesq approximation, the dependence of density on the spatial coordinate and time is ignored in the continuity equation, which is then transformed into the incompressibility equation. Field and experimental observations of fluid flow allow us to identify flow regions with discrete density distribution along one of the coordinates. Such fluids are referred to as stratified fluids in the scientific literature. Their mathematical description is significantly complicated since it is necessary to solve the Oberbeck–Boussinesq equations for each layer and join the analytical or numerical solutions between the layers and the boundaries. For applied studies of convective flows, the Stokes approximation for the total derivative of a vector or scalar function is often introduced. The paper considers the construction of exact Lin–Sidorov–Aristov solutions for describing slow (creeping) flows of a non-uniformly heated stratified fluid. In this case, hydrodynamic fields are described by special polynomials with functional arbitrariness. It is shown how the calculations of unknown coefficients can be automated to form hydrodynamic fields (velocities and temperatures). For steady-state Stokes-type flows, an exact solution of the Oberbeck–Boussinesq system is written out explicitly (by means of formulas).

Keywords: exact solution, Navier–Stokes equation, Oberbeck–Boussinesq equation, Stokes approximation, convection, multilayer fluid, Lin–Sidorov–Aristov class

References:

  1. Ostroumov, G.A. Free convection under the condition of the internal problem. Technical Memorandum Ser., 1407, National Advisory Committee for Aeronautics, Washington, 1958.
  2. Gershuni, G.Z. and Zhukhovitskii, E.M. Convective Stability of Incompressible Liquid, Wiley, Keter Press, Jerusalem, 1976.
  3. Gershuni, G.Z., Zhukhovitskii, E.M., and Nepomnyashchii, A.A. Ustoychivost konvektivnykh techeniy [Stability of Convective Flows]. Nauka Publ., Moscow, 1989, 320 p. (In Russian).
  4. Getling, A.V. Formation of spatial structures in Rayleigh–Bénard convection. Soviet Physics Uspekhi, 1991, 34 (9), 737–776. DOI: 10.1070/PU1991v034n09ABEH002470.
  5. Andreev, V.K., Gaponenko, Ya.A., Goncharova, O.N., and Pukhnachev, V.V. Mathematical Models of Convection, De Gruyter, Berlin, Boston, 2012, 417 p. DOI: 10.1515/9783110258592.
  6. Aristov, S.N. and Schwarz, K.G. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Vortex Flows in Thin Layers of Liquid]. VyatGU Publ., Kirov, 2011, 206 p. (In Russian).
  7. Birikh, R.V. Thermocapillary convection in a horizontal layer of liquid. Journal of Applied Mechanics and Technical Physics, 1966, 7 (3), 43–44. DOI: 10.1007/bf00914697.
  8. Shliomis, M.I. and Yakushin, V.I. The convection in a two-layer binary system with evaporation. Uchenye Zapiski Permskogo Gosuniversiteta, Seriya Gidrodinamika, 1972, 4, 129–140. (In Russian).
  9. Gershuni, G.Z. On the stability of plane convective motion of a fluid. Zh. Tekh. Fiz., 1953, 23 (10), 1838–1844. (In Russian).
  10. Batchelor, G.K. Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Quart. Appl. Math., 1954, 12 (3), 209–233. DOI: 10.1090/qam/64563.
  11. Schwarz, K.G. Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries. Fluid Dynamics, 2014, 49 (4), 438–442. DOI: 10.1134/S0015462814040036.
  12. Knyazev, D.V. Two-dimensional flows of a viscous binary fluid between moving solid boundaries. Journal of Applied Mechanics and Technical Physics, 2011, 52 (2), 212–217. DOI: 10.1134/ S0021894411020088.
  13. Aristov, S.N. and Prosviryakov, E.Yu. On laminar flows of planar free convection. Nelineynaya Dinamika, 2013, 9 (4), 651–657. (In Russian).
  14. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F. Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows. Theoretical Foundations of Chemical Engineering, 2016, 50 (2), 132–141. DOI: 10.1134/S0040579516020019.
  15. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F. Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid. Vychislitelnaya Mekhanika Sploshnykh Sred, 2015, 8 (4), 445–456. (In Russian). DOI: 10.7242/1999-6691/2015.8.4.38.
  16. Lin, C.C. Note on a class of exact solutions in magneto-hydrodynamics. Archive for Rational Mechanics and Analysis, 1957, 1, 391–395. DOI: 10.1007/BF00298016.
  17. Sidorov, A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. Journal of Applied Mechanics and Technical Physics, 1989, 30 (2), 197–203. DOI: 10.1007/BF00852164.
  18. Aristov, S.N. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Eddy Currents in Thin Liquid Layers: Synopsis of Doctoral Thesis]. Vladivostok, 1990, 303 p. (In Russian).
  19. Aristov, S.N. and Shvarts, K.G. Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dynamics, 2013, 48, 330–335. DOI: 10.1134/S001546281303006X.
  20. Aristov, S.N. and Prosviryakov, E.Yu. A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, 50, 286–293. DOI: 10.1134/S0040579516030027.
  21. Baranovskii, E.S., Burmasheva, N.V., and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations with couple stresses. Symmetry, 2021, 13 (8), 1355. DOI: 10.3390/sym13081355.
  22. Goruleva, L.S. and Prosviryakov, E.Yu. A new class of exact solutions to the Navier–Stokes equations with allowance for internal heat release. Optics and Spectroscopy, 2022, 130 (6), 365–370. DOI: 10.1134/S0030400X22070037.
  23. Burmasheva, N., Ershkov, S., Prosviryakov, E., and Leshchenko, D. Exact solutions of Navier–Stokes equations for quasi-two-dimensional flows with Rayleigh friction. Fluids, 2023, 8 (4), 123. DOI: 10.3390/fluids8040123.
  24. Burmasheva, N.V. and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations for describing the convective flows of multilayer fluids. Rus. J. Nonlin. Dyn., 2022, 18 (3), 397–410. DOI: 10.20537/nd220305.
  25. Burmasheva, N.V. and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations describing stratified fluid flows. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2021, 25 (3), 491–507. DOI: 10.14498/vsgtu1860.
  26. Prosviryakov, E.Yu. New class of exact solutions of Navier-Stokes equations with exponential dependence of velocity on two spatial coordinates. Theoretical Foundations of Chemical Engineering, 2019, 53 (1), 107–114. DOI: 10.1134/S0040579518060088.
  27. Privalova, V.V. and Prosviryakov, E.Yu. A new class of exact solutions of the Oberbeck–Boussinesq equations describing an incompressible fluid. Theoretical Foundations of Chemical Engineering, 2022, 56 (3), 331–338. DOI: 10.1134/S0040579522030113.
  28. Goruleva, L.S. and Prosviryakov, E.Yu. Nonuniform Couette–Poiseuille shear flow with a moving lower boundary of a horizontal layer. Technical Physics Letters, 2022, 48, 258–262. DOI: 10.1134/S1063785022090024.
  29. Goruleva, L.S. and Prosviryakov, E.Yu. A new class of exact solutions for magnetohydrodynamics equations to describe convective flows of binary liquids. Khimicheskaya Fizika i Mezoskopiya, 2023, 25 (4), 447–462. (In Russian). DOI: 10.15350/17270529.2023.4.39.
  30. Goruleva, L.S. and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations for describing inhomogeneous isobaric vertical vortex fluid flows in regions with permeable boundaries. Diagnostics, Resource and Mechanics of materials and structures, 2023, 1, 41–53. DOI: 10.17804/2410-9908.2023.1.041-053. Available at: http://dream-journal.org/issues/2023-1/2023-1_393.html
  31. Goruleva, L.S. and Prosviryakov, E.Yu. Unidirectional steady-state inhomogeneous Couette flow with a quadratic velocity profile along a horizontal coordinate. Diagnostics, Resource and Mechanics of materials and structures, 2022, 3, 47–60. DOI: 10.17804/2410-9908.2022.3.047-060. Available at: http://dream-journal.org/issues/2022-3/2022-3_367.html
  32. Goruleva, L.S. and Prosviryakov, E.Yu. Exact solutions for the description of nonuniform unidirectional flows of magnetic fluids in the Lin–Sidorov–Aristov class. Diagnostics, Resource and Mechanics of materials and structures, 2023, 5, 39–52. DOI: 10.17804/2410-9908.2023.5.039-052. Available at: http://dream-journal.org/issues/2023-5/2023-5_415.html
  33. Privalova, V.V. and Prosviryakov, E.Yu. Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer. Nelineynaya Dinamika., 2018, 14 (1), 69–79. (In Russian). DOI: 10.20537/nd1801007.
  34. Vlasova, S.S. and Prosviryakov, E.Yu. Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary. Russian Aeronautics, 2016, 59 (4), 529–535. DOI: 10.3103/S1068799816040140.
  35. Aristov, S.N., Privalova, V.V., and Prosviryakov, E.Yu. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Nelineynaya Dinamika, 2016, 12 (2), 167–178. (In Russian). DOI: 10.20537/nd1602001.
  36. Aristov, S.N., Privalova, V.V., and Prosviryakov, E.Yu. Planar linear Bénard-Rayleigh convection under quadratic heating of the upper boundary of a viscous incompressible liquid layer. Vestnik Kazanskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. A.N. Tupoleva, 2015, 2, 6–13. (In Russian).
  37. Aristov, S.N. and Prosviryakov, E.Yu. Exact solutions of thermocapillary convection during localized heating of a flat layer of viscous incompressible liquid. Vestnik Kazanskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. A.N. Tupoleva, 2014, 3, 7–12. (In Russian).
  38. Aristov, S.N. and Prosviryakov, E.Yu. On one class of analytic solutions of the stationary axisymmetric convection Bénard–Maragoni viscous incompressible fluid. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2013, 3 (32), 110–118. (In Russian). DOI: 10.14498/vsgtu1205.
  39. Privalova, V.V. and Prosviryakov, E.Yu. Exact solutions for a Couette–Hiemenz creeping convective flow with linear temperature distribution on the upper boundary. Diagnostics, Resource and Mechanics of materials and structures, 2018, 2, 92–109. DOI: 10.17804/2410-9908.2018.2.092-109. Available at: http://dream-journal.org/issues/2018-2/2018-2_170.html
  40. Privalova, V.V. and Prosviryakov, E.Yu. Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2018, 22 (3), 532–548. DOI: 10.14498/vsgtu1638.
  41. Andreev, V.K. and Efimova, M.V. The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers. Journal of Applied and Industrial Mathematics, 2024, 18 (2), 179–191. DOI: 10.1134/S1990478924020017.
  42. Andreev, V.K. Thermocapillary convection of immiscible liquid in a three-dimensional layer at low Marangoni numbers. Journal of Siberian Federal University, Mathematics and Physics, 2024, 17 (2), 195–206.
  43. Andreev, V.K. and Pianykh, A.A. Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel. Journal of Siberian Federal University, Mathematics and Physics, 2023, 16 (1), 48–55.
  44. Andreev, V.K. and Lemeshkova, E.N. Thermal convection of two immiscible fluids in a 3D channel with a velocity field of a special type. Fluid Dynamics, 2023, 58 (7), 1246–1254. DOI: 10.1134/s0015462823602176.
  45. Andreev, V.K. and Uporova, A.I. Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe. Journal of Siberian Federal University, Mathematics and Physics, 2023, 16 (1), 5–16.
  46. Andreev, V.K. and Uporova, A.I. On a spectral problem for convection equations. Journal of Siberian Federal University, Mathematics and Physics, 2022, 15 (1), 88–100. DOI: 10.17516/1997-1397-2022-15-1-88-100.
  47. Andreev, V.K. and Stepanova, I.V. Inverse problem for source function in parabolic equation at Neumann boundary conditions. Journal of Siberian Federal University, Mathematics and Physics, 2021, 14 (4), 445–451. DOI: 10.17516/1997-1397-2021-14-4-445-451.
  48. Andreev, V.K. and Sobachkina, N.L. Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface. Journal of Siberian Federal University, Mathematics and Physics, 2021, 14 (4), 507–518. DOI: 10.17516/1997-1397-2021-14-4-507-518.
  49. Lemeshkova, E. and Andreev, V. On the asymptotic behavior of inverse problems for parabolic equation. Journal of Elliptic and Parabolic Equations, 2021, 7 (2), 905–921. DOI: 10.1007/s41808-021-00127-8.
  50. Andreev, V.K. Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet. Journal of Siberian Federal University, Mathematics and Physics, 2021, 14 (2), 204–212. DOI: 10.17516/1997-1397-2021-14-2-204-212.

Л. С. Горулева, И. И. Обабков, Е. Ю. Просвиряков

ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ОБЕРБЕКА – БУССИНЕСКА ДЛЯ ОПИСАНИЯ ТЕЧЕНИЙ МНОГОСЛОЙНЫХ ЖИДКОСТЕЙ В ПРИБЛИЖЕНИИ СТОКСА

Течение вязких несжимаемых жидкостей в технологических и природных процессах, технических устройствах характеризуется стратификацией гидродинамических полей. Традиционно исследуют стратификацию поля скорости и поля давления для изотермических потоков. Если движение жидкости происходит в тепловом поле, то важной характеристикой несжимаемой жидкости является температура. Конвективное течение жидкости имеет очень сложную топологическую структуру гидродинамических полей из-за зависимости плотности от температуры. Как известно, при описании конвекции в приближении Буссинеска зависимость плотности от пространственных координат и от времени игнорируется в уравнении непрерывности, и оно трансформируется в уравнение несжимаемости. Натурные и экспериментальные наблюдения за течением жидкостей позволяют выделить области потока с дискретным распределением плотности по одной из координат. Такие жидкости в научной литературе называют многослойными жидкостями. Их математическое описание существенно усложняется, поскольку для каждого слоя необходимо решать систему уравнений Обербека – Буссинеска и «сшивать» аналитические или численные решения между слоями и границами. Для прикладных исследований конвективных потоков часто вводится аппроксимация Стокса для полной производной векторной или скалярной функции. В статье рассмотрено построение точных решений Линя – Сидорова – Аристова для описания медленных (ползущих) течений неоднородно нагретой многослойной жидкости. В этом случае гидродинамические поля описываются специальными полиномами с функциональным произволом. Показано, как можно автоматизировать вычисления неизвестных коэффициентов для формирования гидродинамических полей (скоростей и температуры). Для установившихся течений типа Стокса точное решение системы Обербека – Буссинеска выписано в явном виде (посредством формул).

Ключевые слова: точное решение, уравнение Навье – Стокса, уравнение Обербека – Буссинеска, аппроксимация Стокса, конвекция, многослойная жидкость, класс Линя – Сидорова – Аристова

Библиография:

  1. Ostroumov G. A. Free convection under the condition of the internal problem. Ser. Technical Memorandum. – No. 1407. – Washington : National Advisory Committee for Aeronautics, 1958. – DOI: 10.1007/s11003-015-9815-y.
  2. Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. – М. : Наука, 1972. – 392 с.
  3. Гершуни Г. З., Жуховицкий Е. М., Непомнящий А. А. Устойчивость конвективных течений. – М. : Наука, 1989. – 320 с.
  4. Getling A. V. Formation of spatial structures in Rayleigh–Bénard convection // Soviet Physics Uspekhi. – 1991. – 34 (9). – P. 737–776. – DOI: 10.1070/PU1991v034n09ABEH002470.
  5. Mathematical Models of Convection / V. K. Andreev, Ya. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev. – Berlin, Boston : De Gruyter, 2012. – 417 p. – DOI: 10.1515/9783110258592.
  6. Аристов С. Н., Шварц К. Г. Вихревые течения в тонких слоях жидкости. – Киров : ВятГУ, 2011. – 206 с.
  7. Birikh R. V. Thermocapillary convection in a horizontal layer of liquid // Journal of Applied Mechanics and Technical Physics. – 1966. – Vol. 7 (3). – P. 43–44. – DOI: 10.1007/bf00914697.
  8. Шлиомис М. И., Якушин В. И. Конвекция в двухслойной бинарной системе с испарением // Ученые записки Пермского госуниверситета. Сер. Гидродинамика. – 1972. – № 4. – C. 129–140.
  9. Гершуни Г. З. Об устойчивости плоского конвективного течения жидкости // Журнал технической физики. – 1953. – Т. 23 (10). – С. 1838–1844.
  10. Batchelor G. K. Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures // Quart. Appl. Math. – 1954. – Vol. 12 (3). – P. 209–233. – DOI: 10.1090/qam/64563.
  11. Schwarz K. G. Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries // Fluid Dynamics. – 2014. – Vol. 49 (4). – P. 438–442. – DOI: 10.1134/S0015462814040036.
  12. Knyazev D. V. Two-dimensional flows of a viscous binary fluid between moving solid boundaries // Journal of Applied Mechanics and Technical Physics. – 2011. – Vol. 52 (2). – P. 212–217. – DOI: 10.1134/ S0021894411020088.
  13. Аристов С. Н., Просвиряков Е. Ю. О слоистых течениях плоской свободной конвекции // Нелинейная динамика. – 2013. – Т. 9 (4). – С. 651–657.
  14. Aristov S. N., Prosviryakov E. Yu., Spevak L. F. Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows // Theoretical Foundations of Chemical Engineering. – 2016. – Vol. 50 (2). – P. 132–141. – DOI: 10.1134/S0040579516020019.
  15. Аристов С. Н., Просвиряков Е. Ю., Спевак Л. Ф. Нестационарная слоистая тепловая и концентрационная конвекция Марангони вязкой несжимаемой жидкости // Вычислительная механика сплошных сред. – 2015. – Т. 8 (4). – С. 445–456. – DOI: 10.7242/1999-6691/2015.8.4.38.
  16. Lin C. C. Note on a class of exact solutions in magneto-hydrodynamics // Archive for Rational Mechanics and Analysis. – 1957. – Vol. 1. – P. 391–395. – DOI: 10.1007/BF00298016.
  17. Sidorov A. F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory // Journal of Applied Mechanics and Technical Physics. – 1989. – Vol. 30 (2). – P. 197–203. – DOI: 10.1007/BF00852164.
  18. Аристов С. Н. Вихревые течения в тонких слоях жидкости : автореф. дис. … д-ра физ.-мат. наук : 01.02.05. – Владивосток, 1990. – 303 с.
  19. Aristov S. N., Shvarts K. G. Convective heat transfer in a locally heated plane incompressible fluid layer // Fluid Dynamics. – 2013. – Vol. 48. – P. 330–335. – DOI: 10.1134/S001546281303006X.
  20. Aristov S. N., Prosviryakov E. Yu. A new class of exact solutions for three-dimensional thermal diffusion equations // Theoretical Foundations of Chemical Engineering. – 2016. – Vol. 50. – P. 286–293. – DOI: 10.1134/S0040579516030027.
  21. Baranovskii E. S., Burmasheva N. V., Prosviryakov E. Yu. Exact solutions to the Navier–Stokes equations with couple stresses // Symmetry. – 2021. – Vol. 13 (8). – P. 1355. – DOI: 10.3390/sym13081355.
  22. Goruleva L. S., Prosviryakov E. Yu. A new class of exact solutions to the Navier–Stokes equations with allowance for internal heat release // Optics and Spectroscopy. – 2022. – Vol. 130 (6). – P. 365–370. – DOI: 10.1134/S0030400X22070037.
  23. Exact solutions of Navier–Stokes equations for quasi-two-dimensional flows with Rayleigh friction / N. Burmasheva, S. Ershkov, E. Prosviryakov, D. Leshchenko // Fluids. – 2023. – Vol. 8 (4). – P. 123. – DOI: 10.3390/fluids8040123.
  24. Burmasheva N. V., Prosviryakov E. Yu. Exact solutions to the Navier–Stokes equations for describing the convective flows of multilayer fluids // Rus. J. Nonlin. Dyn. – 2022. – Vol. 18 (3). – P. 397–410. 10.20537/nd220305.
  25. Burmasheva N. V., Prosviryakov E. Yu. Exact solutions to the Navier–Stokes equations describing stratified fluid flows // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. – 2021. – Vol. 25 (3). – P. 491–507. – DOI: 10.14498/vsgtu1860.
  26. Prosviryakov E. Yu. New class of exact solutions of Navier-Stokes equations with exponential dependence of velocity on two spatial coordinates // Theoretical Foundations of Chemical Engineering. – 2019. – Vol. 53 (1). – P. 107–114. – DOI: 10.1134/S0040579518060088.
  27. Privalova V. V, Prosviryakov E. Yu. A new class of exact solutions of the Oberbeck–Boussinesq equations describing an incompressible fluid // Theoretical Foundations of Chemical Engineering. – 2022. – Vol. 56 (3). – P. 331–338. – DOI: 10.1134/S0040579522030113.
  28. Goruleva L. S., Prosviryakov E. Yu. Nonuniform Couette–Poiseuille shear flow with a moving lower boundary of a horizontal layer // Technical Physics Letters. – 2022. – Vol. 48. – P. 258–262. – DOI: 10.1134/S1063785022090024.
  29. Горулева Л. С., Просвиряков Е. Ю. Новый класс точных решений уравнений магнитной гидродинамики для описания конвективных течений бинарных жидкостей // Химическая физика и мезоскопия. – 2023. – Т. 25 (4). – С. 447–462. – DOI: 10.15350/17270529.2023.4.39.
  30. Goruleva L. S., Prosviryakov E. Yu. Exact Solutions to the Navier–Stokes equations for describing inhomogeneous isobaric vertical vortex fluid flows in regions with permeable boundaries // Diagnostics, Resource and Mechanics of materials and structures. – 2023. – Iss. 1. – P. 41–53. – DOI: 10.17804/2410-9908.2023.1.041-053. – URL: http://dream-journal.org/issues/2023-1/2023-1_393.html
  31. Goruleva L. S., Prosviryakov E. Yu. Unidirectional steady-state inhomogeneous Couette flow with a quadratic velocity profile along a horizontal coordinate // Diagnostics, Resource and Mechanics of materials and structures. – 2022. – Iss. 3. – P. 47–60. – DOI: 10.17804/2410-9908.2022.3.047-060. – URL: http://dream-journal.org/issues/2022-3/2022-3_367.html
  32. Goruleva L. S., Prosviryakov E. Yu. Exact solutions for the description of nonuniform unidirectional flows of magnetic fluids in the Lin–Sidorov–Aristov class // Diagnostics, Resource and Mechanics of materials and structures. – 2023. – Iss. 5. – P. 39–52. – DOI: 10.17804/2410-9908.2023.5.039-052. – URL: http://dream-journal.org/issues/2023-5/2023-5_415.html
  33. Привалова В. В., Просвиряков Е. Ю. Стационарное конвективное течение Куэтта-Хименца при квадратичном нагреве нижней границы слоя жидкости // Нелинейная динамика. – 2018. – Т. 14 (1). – С. 69–79. – DOI: 10.20537/nd1801007.
  34. Vlasova, S. S., Prosviryakov E. Yu. Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary // Russian Aeronautics. 2016. – Vol. 59 (4). – P. 529–535. – DOI: 10.3103/S1068799816040140.
  35. Аристов С. Н., Привалова В. В., Просвиряков Е. Ю. Стационарное неизотермическое течение Куэтта. Квадратичный нагрев верхней границы слоя жидкости // Нелинейная динамика. – 2016. – Т. 12 (2). – С. 167–178. – DOI: 10.20537/nd1602001.
  36. Аристов С. Н., Привалова В. В., Просвиряков Е. Ю. Плоская линейная конвекция Бенара–Рэлея при квадратичном нагреве верхней границы слоя вязкой несжимаемой жидкости // Вестник Казанского государственного технического университета им. А. Н. Туполева. – 2015. – № 2. – С. 6–13.
  37. Аристов С. Н., Просвиряков Е. Ю. Точные решения термокапиллярной конвекции при локализованном нагреве плоского слоя вязкой несжимаемой жидкости // Вестник Казанского государственного технического университета им. А. Н. Туполева. – 2014. –№ 3. – С. 7–12.
  38. Аристов С. Н., Просвиряков Е. Ю. Об одном классе аналитических решений стационарной осесимметричной конвекции Бенара–Марангони вязкой несжимаемой жидкости // Вестник Самарского государственного технического университета. Серия «Физ.-мат. науки». – 2013. – № 3 (32). – С. 110–118. – DOI: 10.14498/vsgtu1205.
  39. Privalova V. V., Prosviryakov E. Yu. Exact solutions for a Couette–Hiemenz creeping convective flow with linear temperature distribution on the upper boundary // Diagnostics, Resource and Mechanics of materials and structures. – 2018. – Iss. 2. – P. 92–109. – DOI: 10.17804/2410-9908.2018.2.092-109. – URL: http://dream-journal.org/issues/2018-2/2018-2_170.html
  40. Privalova V. V., Prosviryakov E. Yu. Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. – 2018. – Vol. 22 (3). – P. 532–548. – DOI: 10.14498/vsgtu1638.
  41. Andreev V. K., Efimova M. V. The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers // Journal of Applied and Industrial Mathematics. – 2024. – Vol. 18 (2). – P. 179–191. – DOI: 10.1134/S1990478924020017.
  42. Andreev V. K. Thermocapillary convection of immiscible liquid in a three-dimensional layer at low Marangoni numbers // Journal of Siberian Federal Universit. Mathematics and Physics. – 2024. – Vol. 17 (2). – P. 195–206.
  43. Andreev V. K., Pianykh A. A. Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel // Journal of Siberian Federal University. Mathematics and Physics. – 2023. – Vol. 16 (1). – P. 48–55.
  44. Andreev V. K., Lemeshkova E. N. Thermal convection of two immiscible fluids in a 3D channel with a velocity field of a special type // Fluid Dynamics. – 2023. – Vol. 58 (7). – P. 1246–1254. – DOI: 10.1134/s0015462823602176.
  45. Andreev V. K., Uporova A. I. Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe // Journal of Siberian Federal University. Mathematics and Physics. – 2023. – Vol. 16 (1). – P. 5–16.
  46. Andreev V. K., Uporova A. I. On a spectral problem for convection equations // Journal of Siberian Federal University. Mathematics and Physics. – 2022. – Vol. 15 (1). – P. 88–100. – DOI: 10.17516/1997-1397-2022-15-1-88-100.
  47. Andreev V. K., Stepanova I. V. Inverse problem for source function in parabolic equation at Neumann boundary conditions // Journal of Siberian Federal University. Mathematics and Physics. – 2021. – Vol. 14 (4). – P. 445–451. – DOI: 10.17516/1997-1397-2021-14-4-445-451.
  48. Andreev V. K., Sobachkina N. L. Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface // Journal of Siberian Federal University. Mathematics and Physics. – 2021. – Vol. 14 (4). – P. 507–518. – DOI: 10.17516/1997-1397-2021-14-4-507-518.
  49. Lemeshkova E., Andreev V. On the asymptotic behavior of inverse problems for parabolic equation // Journal of Elliptic and Parabolic Equations. – 2021. – Vol. 7 (2). – P. 905–921. – DOI: 10.1007/s41808-021-00127-8.
  50. Andreev V. K. Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet // Journal of Siberian Federal University. Mathematics and Physics. – 2021. – Vol. 14 (2). – P. 204–212. – DOI: 10.17516/1997-1397-2021-14-2-204-212.

PDF      

Библиографическая ссылка на статью

Goruleva L. S., Obabkov I. I., Prosviryakov and E. Yu. Exact Solutions to the Oberbeck–boussinesq Equations for Describing Multilayer Fluid Flows in the Stokes Approximation // Diagnostics, Resource and Mechanics of materials and structures. - 2025. - Iss. 2. - P. 6-27. -
DOI: 10.17804/2410-9908.2025.2.006-027. -
URL: http://dream-journal.org/issues/content/article_504.html
(accessed: 30.08.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru