Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

S. E. Danilov

FORMATION OF INTERMETALLIC PARTICLES IN AN Fe-Ni-Al ALLOY DURING ANNEALING AND ELECTRON IRRADIATION

DOI: 10.17804/2410-9908.2022.6.107-116

The behavior of intermetallic nanoparticles, such as Ni3Al, and vacancy defects in an fcc Fe-Ni-Al alloy during annealing and electron irradiation is studied by measuring residual resistivity. It is shown that, during annealing at early stages, Ni3Al zones are formed in the quenched Fe-Ni-Al alloy, which increase residual electrical resistance, and during annealing above 700 K, nanosized (~4.5 nm) intermetallic precipitates are formed from them, uniformly distributed in the alloy matrix, whose growth leads to a decrease in residual resistivity. Under irradiation at room temperature, vacancy defects accumulate in the alloy in the form of vacancy complexes. The dissociation of these complexes at about 400 K causes the appearance of freely migrating vacancies and enhances self-diffusion forming Ni3Al bands. At about 600 to 700 K, the solid solution is decomposed thermally. At higher temperatures, the formation of intermetallic particles occurs, which is characterized by a decrease in electrical resistance.

Acknowledgement: The research was performed under the state assignment, theme Function, No. 122021000035-6.

Keywords: irradiation, electrons, electrical resistivity, Fe-Ni-Al alloy, intermetallic compounds, point defect sinks, solid solution decomposition

References:

  1. Williams K.R., Fisher S.B. The void swelling of a γ′-hardened alloy. Radiation Effects, 1972, 15, pp. 243–250.
  2. Johnston W.G., Rosolowsky J.H., Turkalo A.M., Lauritzen T. An experimental survey of swelling in commercial Fe-Cr-Ni alloys bombarded with 5 MeV Ni Ions. J. Nucl. Mater., 1974, 54 (1), pp. 24–40. DOI: 10.1016/0022-3115(74)90073-7.
  3. Parshin A.M. Struktura, prochnost i radiatsionnaya povrezhdaemost korrozionno-stoykikh staley i splavov [Structure, strength and radiation damageability of corrosion-resistant steels and alloys]. Chelyabinsk, Metallurgiya Publ., 1988, 665 p. (In Russian).
  4. Druzhkov A.P., Perminov D.A., Pecherkina N.L. Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe-Ni-Al alloy. Philosophical Magazine, 2008, vol. 88, pp. 959–976. DOI: 10.1080/14786430802014670.
  5. Wilson G., Pickering F.B. A study of zone formation in an austenitic steel containing 4% titanium. Acta Metallurgica, 1968, 16 (1), pp. 115–131. DOI: 10.1016/0001-6160(68)90080-1.
  6. White R.J., Fisher S.B., Miller K.M., Swallow G.A. A resistometric study of ageing in nimonic alloys (I). PE16. J. Nucl. Mater., 1974, vol. 52 (1), pp. 51–58. DOI: 10.1016/0022-3115(74)90024-5.
  7. Whelchel R.L., Kelekanjeri V.S.K.G., Gerhardt R.A. Mechanical and electrical characterisation in age hardened Waspaloy microstructures. International Heat Treatment & Surface Engineering, 2009, 3 (1), pp. 35–39. DOI: 10.1179/174951409X12450558152589.
  8. Druzhkov A.P., Danilov S.E., Perminov D.A., & Arbuzov V.L. Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe−Ni−Al ageing alloy characterized by resistivity measurements and positron annihilation. Journal of Nuclear Materials, 2016, 476, pp. 168–178. DOI: 101016/jjnucmat201604045. 
  9. Lifschitz I.M., Slyozov V.V. The Kinetics of Precipitation from Supersaturated Solid Solutions. J. Phys, Chem. Solids, 1961, vol. 19 (1–2), pp. 35–50. DOI: 10.1016/0022-3697(61)90054-3.
  10. Kelekanjeri V.S.K.G., Moss L., Gerhardt R.A., Ilavsky J. Quantification of the coarsening kinetics of γ′ precipitates in Waspaloy microstructures with different prior homogenizing treatments. Acta Materialia, 2009, 57 (16), pp. 4658–4670. DOI: 10.1016/j.actamat.2009.06.019.
  11. Arbuzov V.L., Druzhkov A.P., Danilov S.E. Effects of phosphorus on defects accumulation and annealing in electron-irradiated Fe–Ni austenitic alloys. Journal of Nuclear Materials, 2001, vol. 295 (1–2), pp. 273–280. DOI: 10.1016/S0022-3115(01)00505-0.
  12. Dimitrov C., Dimitrov O., Dworschak F. The interaction of self interstitials with undersized solute atoms in electron-irradiated aluminium. Journal of Physics F: Metal Physics, 1978, 8, pp. 1031–1052. DOI: 10.1088/0305-4608/8/6/009.
  13. Ardell A.J., Nicholson R.B., Eshelby J.D. On the modulated structure of aged Ni–Al alloys. Acta Metall., 1966, 14, pp. 1295–1309.
  14. Hofer C., Stergar E., Maley S.A., Wang Y.Q., Hosemann P. An intermetallic forming steel under radiation for nuclear applications. J. Nucl. Mater., 2015, 458, pp. 361–368. DOI: 10.1016/S0022-3115(01)00505-0.

С. Е. Данилов

ОБРАЗОВАНИЕ ИНТЕРМЕТАЛЛИДНЫХ ЧАСТИЦ В СПЛАВЕ Fe-Ni-Al ПРИ ОТЖИГЕ И ОБЛУЧЕНИИ ЭЛЕКТРОНАМИ

Методом измерения остаточного электрического сопротивления исследовано поведение интерметаллидных наночастиц типа Ni3Al и вакансионных дефектов в ГЦК-сплаве Fe-Ni-Al при отжигах и при электронном облучении. Было показано, что в закаленном сплаве Fe-Ni-Al при отжиге на ранних этапах происходит образование зон состава Ni3Al, повышающих остаточное электросопротивление, а при отжигах выше 700 К из них образуются наноразмерные (~4,5 нм) интерметаллидные выделения, равномерно распределенные в матрице сплава, рост которых приводит к уменьшению остаточного сопротивления. При облучении в районе комнатных температур происходит накопление вакансионных дефектов в виде вакансионных комплексов. Диссоциация этих комплексов в районе 400 К приводит к появлению свободно мигрирующих вакансий и усилению самодиффузии, приводящей к образованию зон состава Ni3Al. В районе 600–700 К процесс распада твердого раствора происходит термически. При более высоких температурах происходит формирование интерметаллидных частиц, характеризующееся спадом электросопротивления.

Благодарность: Исследование выполнено в рамках государственного задания Минобрнауки России (тема «Функция» Г.р. № 122021000035-6).

Ключевые слова: облучение, электроны, электросопротивление, сплав Fe-Ni-Al, интерметаллиды, стоки то-чечных дефектов, распад твердого раствора

Библиография:

  1. Williams K. R., Fisher S. B. The void swelling of a γ′-hardened alloy // Radiation Effects. – 1972. – 15. – P. 243–250.
  2. An experimental survey of swelling in commercial Fe–Cr–Ni alloys bombarded with 5 MeV Ni Ions / W. G. Johnston, J. H. Rosolowsky, A. M. Turkalo, T. Lauritze // J. Nucl. Mater. – 1974. – 54 (1). – P. 24–40. – DOI: 10.1016/0022-3115(74)90073-7. 
  3. Паршин А. М. Структура, прочность и радиационная повреждаемость коррозионно-стойких сталей и сплавов. – Челябинск : Металлургия, 1988. – 665 с.
  4. Druzhkov A. P., Perminov D. A., Pecherkina N. L. Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe-Ni-Al alloy // Philosophical Magazine. – 2008. – Vol. 88. – P. 959–976. – DOI: 10.1080/14786430802014670.
  5. Wilson G., Pickering F. B. A study of zone formation in an austenitic steel containing 4% titanium // Acta Metallurgica. – 1968. – 16 (1). – P. 115–131. – DOI: 10.1016/0001-6160(68)90080-1.
  6. A resistometric study of ageing in nimonic alloys (I). PE16 / R. J. White, S. B. Fisher, K. M. Miller, G. A. A. Swallow // J. Nucl. Mater. – 1974. – Vol. 52 (1). – P. 51–58. – DOI: 10.1016/0022-3115(74)90024-5.
  7. Whelchel R. L., Kelekanjeri V. S. K. G., Gerhardt R. A. Mechanical and electrical characterisation in age hardened Waspaloy microstructures // International Heat Treatment & Surface Engineering. – 2009. – 3 (1). – P. 35–39. – DOI: 10.1179/174951409X12450558152589.
  8. Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe–Ni–Al ageing alloy characterized by resistivity measurements and positron annihilation / A. P. Druzhkov, S. E. Danilov, D. A. Perminov, & V. L. Arbuzov // Journal of Nuclear Materials. –  2016. – 476. – P. 168–178.  – DOI: 101016/jjnucmat201604045.  
  9. Lifschitz I. M., Slyozov V. V. The Kinetics of Precipitation from Supersaturated Solid Solutions // J. Phys, Chem. Solids. – 1961. – Vol. 19 (1–2). – P. 35–50. – DOI: 10.1016/0022-3697(61)90054-3.
  10. Quantification of the coarsening kinetics of γ′ precipitates in Waspaloy microstructures with different prior homogenizing treatments / V. S. K. G. Kelekanjeri, L. Moss, R. A. Gerhardt, J. Ilavsky // Acta Mater. –  2009. – 57 (16). – P. 4658–4670. – DOI: 10.1016/j.actamat.2009.06.019.
  11. Arbuzov V. L., Druzhkov A. P., Danilov S. E. Effects of phosphorus on defects accumulation and annealing in electron-irradiated Fe–Ni austenitic alloys // J. Nucl. Mater.  – 2001. – 295. – P. 273–280. – DOI: 10.1016/S0022-3115(01)00505-0. 
  12. Dimitrov C., Dimitrov O., Dworschak F. The interaction of self interstitials with undersized solute atoms in electron-irradiated aluminium // Journal of Physics F: Metal Physics. – 1978. – 8. – P. 1031–1052. – DOI: 10.1088/0305-4608/8/6/009.
  13. Ardell A. J. & Nicholson R. B. On the modulated structure of aged Ni-Al alloys // Acta Metall. – 1966. – 14 (10). – P. 1295–309. 
  14. An intermetallic forming steel under radiation for nuclear applications / C. Hofer, E. Stergar, S. A. Maley, Y. Q. Wang, P. Hosemann // J. Nucl. Mater. – 2015. – 458. – P. 361–368. – DOI: 10.1016/j.jnucmat.2014.12.099.

PDF      

Библиографическая ссылка на статью

Danilov S. E. Formation of Intermetallic Particles in An Fe-Ni-Al Alloy During Annealing and Electron Irradiation // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 6. - P. 107-116. -
DOI: 10.17804/2410-9908.2022.6.107-116. -
URL: http://dream-journal.org/issues/content/article_388.html
(accessed: 10.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru