Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

E. S. Baymetova

DETERMINATION OF OPTIMAL DESIGN PARAMETERS OF A HEAT EXCHANGING SECTION BY NUMERICAL MODELING

DOI: 10.17804/2410-9908.2022.2.045-054

With the development of industry, the need to improve the efficiency of oil coolers is particularly increasing, due primarily to the rising cost of equipment, as well as increased attention to the issues of resource and energy saving. Oil coolers should not only perform the required functions of oil cooling, but also be as reliable and environmentally friendly as possible. Meanwhile, the majority of serial oil coolers are designed on the basis of outdated technical solutions, and this predetermines the levels of efficiency and reliability of their work as not corresponding to modern requirements. In this connection, the issues of hydrodynamics and heat exchange in finned tubes of oil coolers and refinement of methods of their calculation are relevant both for modernization of existing devices and for design of new oil coolers.

Keywords: mathematical modeling; coupled heat exchange problem; optimization problem; oil coolers; cooling system

Bibliography:

  1. Tsygankov M.P., Kruchinin D.S. Characteristic features of mathematic modeling high-temperature heat exchangers. Izvestiya Vuzov. Khimya i Khimicheskaya Tekhnologiya, 2013, vol. 56, pp. 95–99. (In Russian).
  2. Taraday A.M., Kovalenko L.M., Gurin E.P. Evaluating the thermal power efficiency of heat-exchangers used in municipal heat-and-power engineering. Novosti Teplosnabzheniya, No. 6, pp. 40–43. (In Russian).
  3. Jinov A.A., Shevelev D.V., Anan'ev P.A. Simulation of air pressure losses in the finned tube bundle of an air condenser. Science & Education, 2013, No. 03. DOI: 10.7463/0313.0544307. (In Russian).
  4. Dmitriev А.V., Dmitrieva O.S. Heat exchange in counterflow around rows of air cooler tubes. Vestnik Tecnologicheskogo Universiteta, 2007, vol. 20, No. 13, pp. 40–43. (In Russian).
  5. Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of Heat-exchange Theory]. 5th ed., Moscow, Atomizdat Publ., 1979, 416 p. (In Russian).
  6. Idel'chik I.E. Aerogidrodinamika tekhnologicheskikh apparatov (podvod, otvod i raspredelenie potoka po secheniyu apparatov) [Fluid Dynamic Theory of Processing Vessel]. Moscow, Mashinostroenie Publ., 1983, 351 p. (In Russian).
  7. Sugiyama H., Akiyama M., Shibata K. Heat and Mass Transfer Analysis of Developing Turbulent Flow in a Square Duct. Transactions of the Japan Society of Mechanical Engineers Series B, 1991, vol. 57 (535), pp. 1044–1050. DOI: 10.1299/kikaib.57.1044.
  8. Huser A., Biringen S. Direct numerical simulation of turbulent flow in a square duct. Journal of Fluid Mechanics, 1993, vol. 257, pp. 65–95. DOI: 10.1017/S002211209300299X.
  9. Myong H.K. Numerical investigation of fully developed turbulent fluid flow and heat transfer in a square duct. International Journal of Heat and Fluid Flow, 1991, vol. 12, pp. 344–352. DOI: 10.1016/0142-727X(91)90023-O.
  10. Şenay G., Kaya M., Gedik E., Kayfeci M. Numerical investigation on turbulent convective heat transfer of nanofluid flow in a square cross-sectioned duct. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, vol. 29 (4), pp. 1432–1447. DOI: 10.1108/HFF-06-2018-0260.
  11. Liu J., Hussain S., Wang W., Xie G., Sundén Bengt. Heat transfer enhancement and turbulent flow in a rectangular channel using perforated ribs with inclined holes. Journal of Heat Transfer, 2019, vol. 141 (4), article No. 041702. DOI: 10.1115/1.4042841.
  12. Kumar R., Kumar A., Goel V. Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater Renewable Energy, 2019, vol. 131, pp. 788–799. DOI: 10.1016/j.renene.2018.07.078.
  13. Sharma N., Tariq A., Mishra M. Experimental Investigation of Heat Transfer Enhancement in Rectangular Duct with Pentagonal Ribs. Heat Transfer Engineering, 2019, vol. 40 (1–2), pp. 147–165. DOI: 10.1080/01457632.2017.1421135.
  14. Schindler A., Younis B.A., Weigand B. Large-Eddy Simulations of turbulent flow through a heated square duct. International Journal of Thermal Sciences, 2019, vol. 135, pp. 302–318. DOI: 10.1016/j.ijthermalsci.2018.09.018.
  15. D'yachenko A.Yu., Terekhov V.I., Yarygina N.I. Turbulent flow past a transverse cavity with inclined side walls. 2. Heat transfer. Journal of Applied Mechanics and Technical Physics, 2007, vol. 48, No. 4, pp. 486–491. DOI: 10.1007/s10808-007-0061-4.
  16. Dreitser G.A., Lobanov I.E. Limiting Intensification of Heat Exchange in Tubes Due to Artificial Turbulization of the Flow. Journal of Engineering Physics and Thermophysics, 2003, vol. 76, pp. 54–60. DOI: 10.1023/A:1022959006920.
  17. Baymetova E.S., Chernova A.A., Koroleva M.R., Kelemen M. Optimization of the developed outer surface of an industrial oil cooler. MM Science Journal, 2021, vol. 2021, pp. 4764–4768. DOI: 10.17973/MMSJ.2021_10_2021027.
  18. Baymetova E.S., Gizzatullina A.F., Pushkarev F.N. Conjugate Heat Transfer Problem in the Ribbed Tube with OpenFOAM. Khimicheskaya Fizika i Mezoskopiya [Chemical Physics and Mesoscopy], 2021, vol. 23, No. 2, pp. 154–164. DOI: 10.15350/17270529.2021.2. (In Russian).
  19. Koroleva M.R., Saburova E.A., Chernova A.A. Studying the efficiency of cooling and resistance of ribbed tubular elements. Journal of Physics: Conference Series, 2020, vol. 1675, 012009. DOI: 10.1088/1742-6596/1675/1/012009.
  20. Korolyova M.R., Terentyev A.N., Chernova A.A. Fluid dynamics of a complicated collector. Vestnik Rybinskoy gosudarstvennoy aviatsionnoy tekhnologicheskoy akademii im. P.A. Solovieva, 2021, No. 3 (58), pp. 50–55. (In Russian).
  21. Zhukauskas A.A. Konvektivnyi perenos v teploobmennikakh [Convective transfer in heat exchangers]. M., Nauka Publ., 1982, 472 p. (In Russian).
  22. Salakhov R.R. Raschet teploobmennykh apparatov c naruzhnym orebreniem [Calculation of externally finned heat-exchange apparatus: scientific research report]. Kazan, 2017, 68 p.
  23. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. In: K. Hanjalić, ed. Proc. 4th. Int. Symp. on Turbulence, Heat and Mass Transfer, Begell House, 2003, 8 p.

Е. С. Байметова

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ТЕПЛООБМЕННОЙ СЕКЦИИ ПУТЕМ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

С развитием промышленности, необходимость повышения эффективности работы маслоохладителей особенно возрастает. Это связано в первую очередь с увеличением стоимости оборудования, а также повышенным вниманием к вопросам ресурсо- и энергосбережения. Маслоохладители должны не только выполнять требуемые функции по охлаждению масла, но и быть максимально надежными и экологически безопасными. Между тем большинство серийных маслоохладителей разработаны на основе устаревших технических решений, что определяет уровни эффективности и надежности их работы, не соответствующие современным требованиям. В связи с этим вопросы исследования гидродинамики и теплообмена в оребренных трубках маслоохладителей, а также уточнение методик их расчета являются, актуальными как для модернизации существующих аппаратов, так и при проектировании новых маслоохладителей.

Ключевые слова: математическое моделирование; сопряженная задача теплообмена; задача оптимизации; маслоохладители; система охлаждения

Библиография:

  1. Цыганков М. П., Кручинин Д. С. Особенности математического моделирования высокотемпературных теплообменников // Известия вузов. Химия и химическая технология. – 2013. – Т. 56, вып. 3. – С. 95–99.
  2. Тарадай А. М., Коваленко Л. М., Гурин Е. П. К вопросу оценки теплоэнергетической эффективности теплообменников, применяемых в муниципальной теплоэнергетике // Новости теплоснабжения. – 2003. – № 6. – С. 40–43.
  3. Жинов А. А., Шевелев Д. В., Ананьев П. А. Моделирование потерь давления воздуха в оребренном трубном пучке воздушного конденсатора // Наука и образование. – 2013. – № 03. – DOI: 10.7463/0313.0544307.
  4. Дмитриев А. В., Дмитриева О. С. Теплообмен при встречном обтекании рядов труб аппарата воздушного охлаждения // Вестник технологического университета. – 2017. – Т. 20, № 13 – С. 40–43.
  5. Кутателадзе С. С. Основы теории теплообмена. – М. : Атомиздат, 1979. – 416 с.
  6. Идельчик И. Е. Аэрогидродинамика технологических аппаратов (подвод, отвод и распределение потока по сечению аппаратов). – М. : Машиностроение, 1983. – 351 с.
  7. Sugiyama H., Akiyama M., Shibata K. Heat and Mass Transfer Analysis of Developing Turbulent Flow in a Square Duct // Transactions of the Japan Society of Mechanical Engineers Series B. – 1991. – Vol. 57 (535). – P. 1044–1050. – DOI: 10.1299/kikaib.57.1044.
  8. Huser A., Biringen S. Direct numerical simulation of turbulent flow in a square duct // Journal of Fluid Mechanics. – 1993. – Vol. 257. – P. 65–95. – DOI: 10.1017/S002211209300299X.
  9. Myong H. K. Numerical investigation of fully developed turbulent fluid flow and heat transfer in a square duct // International Journal of Heat and Fluid Flow. – 1991. – Vol. 12. – P. 344–352. – DOI: 10.1016/0142-727X(91)90023-O.
  10. Numerical investigation on turbulent convective heat transfer of nanofluid flow in a square cross-sectioned duct / G. Şenay, M. Kaya, E. Gedik, M. Kayfeci // International Journal of Numerical Methods for Heat and Fluid Flow. – 2019. – Vol. 29 (4). – P. 1432–1447. – DOI: 10.1108/HFF-06-2018-0260.
  11. Heat transfer enhancement and turbulent flow in a rectangular channel using perforated ribs with inclined holes / J. Liu, S. Hussain, W. Wang, G. Xie, Sundén Bengt // Journal of Heat Transfer. – 2019. – Vol. 141 (4). – Article No. 041702. – DOI: 10.1115/1.4042841.
  12. Kumar R., Kumar A., Goel V. Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater // Renewable Energy. – 2019. – Vol. 131. – Р. 788–799. – DOI: 10.1016/j.renene.2018.07.078.
  13. Sharma N., Tariq A., Mishra M. Experimental Investigation of Heat Transfer Enhancement in Rectangular Duct with Pentagonal Ribs // Heat Transfer Engineering. – 2019. – 40 (1–2). – Р. 147–165. – DOI: 10.1080/01457632.2017.1421135.
  14. Schindler A. B., Younis A., Weigand B. Large-Eddy Simulations of turbulent flow through a heated square duct // International Journal of Thermal Sciences. – 2019. – Vol. 135. – Р. 302–318. – DOI: 10.1016/j.ijthermalsci.2018.09.018.
  15. D'yachenko A. Yu., Terekhov V. I., Yarygina N. I. Turbulent flow past a transverse cavity with inclined side walls. 2. Heat transfer // Journal of Applied Mechanics and Technical Physics. – 2007. – Vol. 48, No. 4. – P. 486–491. – DOI: 10.1007/s10808-007-0061-4.
  16. Dreitser G. A., Lobanov I. E. Limiting Intensification of Heat Exchange in Tubes Due to Artificial Turbulization of the Flow // Journal of Engineering Physics and Thermophysics. – 2003. – Vol. 76. – P. 54–60. – DOI: 10.1023/A:1022959006920.
  17. Optimization of the developed outer surface of an industrial oil cooler / E. S. Baymetova, A. A. Chernova, M. R. Koroleva, M. Kelemen // MM Science Journal. – 2021. – Vol. 2021. – P. 4764–4768. – DOI: 10.17973/MMSJ.2021_10_2021027.
  18. Байметова Е. С., Гиззатуллина А. Ф., Пушкарев Ф. Н. Решение задачи сопряженного теплообмена в оребренной трубке с использованием openFOAM // Химическая физика и мезоскопия. – 2021. – Т. 23, № 2. – С. 154–164.
  19. Koroleva M. R., Saburova E. A., Chernova A. A. Studying the efficiency of cooling and resistance of ribbed tubular elements // Journal of Physics : Conference Series. – 2020. – Vol. 1675. – 12009. – DOI: 10.1088/1742-6596/1675/1/012009.
  20. Королева М. Р., Терентьев А. Н., Чернова А. А. Гидродинамика коллектора сложной формы // Вестник Рыбинской государственной авиационной технологической академии им. П. А. Соловьева. – 2021. – № 3 (58). – С. 50–55.
  21. Жукаускас А. А. Конвективный перенос в теплообменниках. – М. : Наука, 1982. – 472 с.
  22. Салахов Р. Р. Расчет теплообменных аппаратов с наружным оребрением : отчет по научно-исследовательской работе. – Казань, 2017. – 68 с.
  23. Menter F. R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model // 4th. Int. Symp. on Turbulence, Heat and Mass Transfer : procceedings / ed. by K. Hanjalić. – Begell House, 2003. – 8 p.

PDF      

Библиографическая ссылка на статью

Baymetova E. S. Determination of Optimal Design Parameters of a Heat Exchanging Section by Numerical Modeling // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 2. - P. 45-54. -
DOI: 10.17804/2410-9908.2022.2.045-054. -
URL: http://dream-journal.org/issues/content/article_362.html
(accessed: 08.09.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru