Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

E. V. Abdulmenova, S. P. Buyakova, S. N. Kulkov

INCREASING HYDROGEN SORPTION BY Ti2Ni POWDER USING MECHANOCHEMICAL ALLOYING

DOI: 10.17804/2410-9908.2022.3.025-035

A method has been developed to increase hydrogen sorption by Ti2Ni powder, which consists in mechanochemical alloying by titanium of Ti-Ni powder near the equiatomic composition. This method allows the hydrogen content in the powder material to be increased several times. It is possible to use the developed powder material for the safe storage and transportation of hydrogen in the metal hydride with a high hydrogen content, with reversible adsorption of hydrogen, in comparison with the storage and transportation of hydrogen in compressed and liquid form. The developed method is simple to implement and low-cost; therefore, it is of economic and practical interest. For mechanochemical alloying, a high-intensity planetary ball mill was used, with a drum rotation speed of 1820 rpm and a processing time of 300 seconds. It is shown that, after mechanochemical alloying, the powder Ti-Ni (85 wt%) – Ti (15 wt%) powder consisted of TiNi in two modifications, namely B2 and B19`, and two Ti2Ni phases with different lattice parameters. The existence of two Ti2Ni phases is due to both the inheritance of this phase from the initial Ti-Ni powder (Ti2Ni(I)), and its formation during the interaction of titanium with TiNi (B2, B19`) in the process of mechanochemical alloying (Ti2Ni(II)). The Ti2Ni (II) phase formed by mechanochemical alloying is more prone to interact with hydrogen with the formation of Ti2NiHx hydride than the Ti2Ni (I) phase present in Ti-Ni powder before alloying. The lattice parameter of the Ti2Ni (II) phase increases by 17.6 % during hydrogenation and corresponds to Ti2NiH2.8 hydride; this result exceeds the change in the cell volume of Ti2Ni obtained by other methods.

Acknowledgements: The study was performed under the government’s statements of work for ISPMS SB RAS (Project FWRW-2021-0005 and FWRW-2021-0009).

Keywords: Ti2Ni, mechanochemical alloying, Ti, heat treatment, electrochemical hydrogenation

Bibliography:

  1. Klell M., Eichlseder H., Trattner A. Wasserstoff in der Fahrzeugtechnik. Wiesbaden, Springer Fachmedien Wiesbaden, 2018, 337 p. DOI: 10.1007/978-3-658-20447-1.
  2. Astafurova E.G., Melnikov E.V., Astafurov S.V., Ratochka I.V., Mishin I.P., Maier G.G., Moskvina V.A., Zakharov G.N., Smirnov A.I., Bataev V.A. Hydrogen Embrittlement of Austenitic Stainless Steels with Ultrafine-Grained Structures of Different Morphologies. Physical Mesomechanics, 2019, vol. 22, pp. 313–326. DOI: 10.1134/s1029959919040076.
  3. Balcerzak M., Nowak M., Jurczyk M. Hydrogenation and electrochemical studies of La–Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 1436–1443. DOI: 10.1016/j.ijhydene.2016.05.220.
  4. Schirowski M, Abellán G., Nuin E., Pampel J., Dolle C., Wedler V., Fellinger T.-P., Spiecker E., Hauke F., Hirsch A. Fundamental insights into the reductive covalent cross-linking of single-walled carbon nanotubes. Journal of the American Chemical Society, 2018, vol. 140, pp. 3352–3360. DOI: 10.1021/jacs.7b12910.
  5. Tanui P.K., Namwetako J.S., Cherop H.K., Khanna K.M. Hydrogen Storage in Metal Organic Frameworks. World Scientific News, 2022, vol. 169, pp. 121–135. DOI: 10.1007/978-3-662-53514-1_5.
  6. Mansouri M., Shtender V., Tunsu C., Yilmaz D., Messaoudi O., Ebin B., Sahlberg M., Petranikova M. Production of AB5 materials from spent Ni-MH batteries with further tests of hydrogen storage suitability. Journal of Power Sources, 2022, vol. 539, pp. 231459. DOI: 10.1016/j.jpowsour.2022.231459.
  7. Cui N., He P., Luo J.L. Magnesium-based hydrogen storage materials modified by mechanical alloying. Acta Materialia, 1999, vol. 47, pp. 3737–3743. DOI: 10.1016/S1359-6454(99)00249-9.
  8. Dell'Era A., Pasquali M., Vecchio Ciprioti S., Lupi C., Brotzu A., Mura F., Tuffi R. Synthesis and characterization of a MgNi-RE alloy for hydrogen storage. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 26333–26342. DOI: 10.1016/j.ijhydene.2017.08.207.
  9. Zhang J., Zhu Y., Yao L., Xu C., Liu Y., Liab L. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, vol. 782, pp. 796–823. DOI: 10.1016/j.jallcom.2018.12.217.
  10. Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials, 1996, vol. 17, pp. 2003–2008. DOI: 10.1016/0142-9612(95)00352-5.
  11. Guiose B., Cuevas F., Décamps B., Percheron-Guégan A. Solid-gas and electrochemical hydrogenation properties of pseudo-binary (Ti,Zr)Ni intermetallic compounds. International Journal of Hydrogen Energy, 2008, vol. 33, pp. 5795–5800. DOI 10.1016/j.ijhydene.2008.07.056.
  12. Zhao X., Li J., Yao Y., Ma L., Shen X. Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy. RSC Advances, 2012, vol. 2, pp. 2149–2153. DOI: 10.1039/C2RA00846G.
  13. Buchner H., Gutjahr M., Beccu K.-D., Säufferer H. Wasserstoff in intermetallischen phasen am beispiel des systems titannickel-wasserstoff. Zeitschrift Fur Metallkunde, 1972, vol. 63, pp. 497–500.
  14. Luan B., Cui N., Zhao H., Liu H.K., Dou S.X. Mechanism of early capacity loss of Ti2Ni hydrogen-storage alloy electrode. Journal of Power Sources, 1995, vol. 55, pp. 101–106. DOI: 10.1016/0378-7753(94)02162-V.
  15. Luan B., Kennedy S.J., Liu H.K., Dou, S.X. On the charge/discharge behavior of Ti2Ni electrode in 6 M KOH aqueous and deuterium oxide solutions. Journal of Alloys and Compounds, 1998, vol. 267, pp. 224–230. DOI: 10.1016/s0925-8388(97)00461-1.
  16. Fokin V.N., Fokina E.E., Korobov I.I., Tarasov B.P. Hydriding of Intermetallic Compound Ti2Ni. Russian Journal of Inorganic Chemistry, 2014, vol. 59, pp. 1073–1076. DOI: 10.1134/S0036023614100076.
  17. Geng M., Han J., Feng F., Northwood D.O. Hydrogen-absorbing alloys for the NICKEL–METAL hydride battery. International Journal of Hydrogen Energy, 1998, vol. 23, pp. 1055–1060. DOI: 10.1016/S0360-3199(98)00020-2.
  18. Anik M., Kucukdeveci N. Discharging characteristics of CoB nano powders. International Journal of Hydrogen Energy, 2013, vol. 38, pp. 1501–1509. DOI: 10.1016/j.ijhydene.2012.11.090.
  19. Hosni B., Li X., Khaldi C., ElKedim O., Lamloumia J. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling. Journal of Alloys and Compounds, 2014, vol. 615, pp. 119–125. DOI: 10.1016/j.jallcom.2014.06.152.
  20. Zadorozhnyi V.Y., Skakov Y.A. & Milovzorov G.S. Appearance of metastable states in Fe-Ti and Ni-Ti systems in the process of mechanochemical synthesis. Metal Science and Heat Treatment, 2008, vol. 50, art. No. 404. DOI: 10.1007/s11041-008-9078-4.
  21. Abdulmenova E.V., Kulkov S.N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation. International Journal of Hydrogen Energy, 2021, vol. 46, pp. 823–836. DOI: 10.1016/j.ijhydene.2020.09.171.
  22. Nelson J.B., Riley D.P. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proceedings of the Physical Society, 1945, vol. 57, pp. 160–177. DOI: 10.1088/0959-5309/57/3/302.
  23. Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. In: Nachrichten von der Königl Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1918, vol. 2, pp. 98–100.
  24. Grigoriev M.V., Molchunova L.M., Buyakova S.P., Kulkov S.N. Effect of mechanical treatment on manner, structure and properties of nonsto-ichiometric titanium carbide powder. Russian Physics Journal, 2013, vol. 56, no. 7/2, pp. 206–210. (In Russian).
  25. Avvakumov Ye.G. Mekhanicheskiye metody aktivatsii khimicheskikh protsessov [Mechanical Methods for Activation of Chemical Processes]. Novosibirsk, Nauka Publ., 1986, 305 p. (In Russian).
  26. Hiemenz P.C. Principles of Colloid and Surface Chemistry, New York, Marcel Dekker Publisher, 1997, 650 p.
  27. Buyakova S.P., Kul’kov S.N. Effect of mechanical processing of ultrafine ZrO2+3wt%MgO powder on the microstructure of ceramics produced from it. Inorganic Materials, 2010, vol. 46, pp. 1155–1158. DOI: 10.1134/S0020168510100249.
  28. Anikeev S.G., Kaftaranova M.I., Khodorenko V.N., Artyukhova N.V., Garin A.S., Gyunter V.E. Effect of titanium additions on structural aspects of porous TiNi-based materials prepared by diffusion sintering. Inorganic Materials, 2020, vol. 56, No. 9, pp. 918–923. DOI: 10.1134/S0020168520090022.
  29. Berdonosova E.A., Zadorozhnyy V.Y., Zadorozhnyy M.Y., Geodakian K.V., Zheleznyi M.V., Tsarkov A.A., Klyamkin S.N. Hydrogen storage properties of TiFe-based ternary mechanical alloys with cobalt and niobium. A thermochemical approach. International Journal of Hydrogen Energy, 2019, vol. 44, pp. 29159–29165. DOI: 10.1016/j.ijhydene.2019.03.057.
  30. Zhang Z., Elkedim O., Balcerzak M., Jurczyk M., Chassagnonc R. Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNix ternary alloys. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 23751–23758. DOI: 10.1016/J.IJHYDENE.2017.03.051.
  31. In: Massalski T.B., Murray J.L., Bennett L.H., Baker H., eds. Binary Alloy Phase Diagrams. ASM International, Materials Park, OH, 1990, vol. 3, pp. 2874–2876.
  32. Yurko G.A., Barton J.W., Gordon Parr J. The crystal structure of Ti2Ni. Acta Crystallographica, 1959, vol. 12, pp. 909–911. DOI: 10.1107/S0365110X59002559.
  33. Pelton A., Trépanier C., Gong X.Y., Wick A., Chen K.C. Structural and diffusional effects of hydrogen in TiNi. In: T.W. Duerig, A. Pelton, eds. Proceedings of SMST-2003, Monterey, California, Materials Park, 2003, pp. 2–9.
  34. Saito T., Yokoyama, T., Takasaki, A. Hydrogenation of TiNi shape memory alloy produced by mechanical alloying. Journal of Alloys and Compounds, 2011, vol. 509, pp. S779–S781. DOI: 10.1016/j.jallcom.2010.10.128.

Е. В. Абдульменова, С. П. Буякова, С. Н. Кульков

УВЕЛИЧЕНИЕ СОРБЦИИ ВОДОРОДА ПОРОШКОМ Ti2Ni ПРИ МЕХАНОХИМИЧЕСКОМ ЛЕГИРОВАНИИ

Разработан способ увеличения сорбции водорода порошковым Ti2Ni, заключающийся в механохимическом легировании титаном порошка Ti-Ni вблизи эквиатомного состава. Предложенный способ позволяет увеличить содержание водорода в несколько раз в порошковом Ti2Ni, что делает весьма перспективным его использование для безопасного хранения и транспортировки водорода в виде гидрида металла с высоким содержанием водорода и высоким качеством водорода, как топливного газа. Разработанный способ является менее затратным в сравнении с другими технологическими подходами по насыщению материалов водородом, что представляет экономический и практический интерес. При механохимическом легировании использовалась высокоинтенсивная планетарная шаровая мельница со скоростью вращения барабана 1820 об/мин, длительностью обработки 300 сек. Методом рентгенофазового анализа показано, что порошок состава Ti-Ni (85 % мас.) – Ti (15 % мас.) после механохимического легирования состоял из TiNi в двух модификациях B2 и B19`, а также двух фаз Ti2Ni с разным параметром ячейки. Существование двух фаз Ti2Ni обусловлено как наследованием этой фазы из исходного порошка Ti-Ni (Ti2Ni(I)), так и ее формированием при взаимодействии титана c TiNi (B2, B19`) в процессе механохимического легирования (Ti2Ni(II)). Выявлено, что образованная фаза Ti2Ni (II) является более активной при поглощении водорода, что обусловило формирование гидрида Ti2NiHx, в то время как при взаимодействии водорода с фазой Ti2Ni(I) формируется твердый раствор. Параметр ячейки фазы Ti2Ni (II) в процессе гидрирования увеличился на 17,6 % и соответствовал составу гидрида Ti2NiH2,8, что превышает изменение объема ячейки Ti2Ni, полученного другими методами.

Благодарности: Работа выполнена в рамках государственных заданий ИФПМ СО РАН проекта FWRW-2021-0005 и проекта FWRW-2021-0009.

Ключевые слова: Ti2Ni, механохимические легирование, Ti, термическая обработка, электрохимическое гидрирование.

Библиография:

  1. Klell M., Eichlseder H., Trattner A. Wasserstoff in der Fahrzeugtechnik. – Wiesbaden : Springer Fachmedien Wiesbaden, 2018. – 337 p. – DOI: 10.1007/978-3-658-20447-1.
  2. Hydrogen Embrittlement of Austenitic Stainless Steels with Ultrafine-Grained Structures of Different Morphologies / E. G. Astafurova, E. V. Melnikov, S. V. Astafurov, I. V. Ratochka, I. P. Mishin, G. G. Maier, V. A. Moskvina, G. N. Zakharov, A. I. Smirnov, V.A. Bataev // Physical Mesomechanics. – 2019. – Vol. 22. – P. 313–326. – DOI: 10.1134/s1029959919040076.
  3. Balcerzak M., Nowak M., Jurczyk M. Hydrogenation and electrochemical studies of La-Mg-Ni alloys // International Journal of Hydrogen Energy. – 2017. – Vol. 42, No 2. – P. 1436–1443. – DOI: 10.1016/j.ijhydene.2016.05.220.
  4. Fundamental insights into the reductive covalent cross-linking of single-walled carbon nanotubes / M. Schirowski, G. Abellán, E. Nuin, J. Pampel, C. Dolle, V. Wedler, T.-P. Fellinger, E. Spiecker, F. Hauke, A. Hirsch // Journal of the American Chemical Society. – 2018. – Vol. 140, No. 9. – P. 3352–3360 – DOI: 10.1021/jacs.7b12910.
  5. Hydrogen Storage in Metal Organic Frameworks / P. K. Tanui, J. S. Namwetako, H. K. Cherop, K. M. Khanna // World Scientific News. – 2022. – Vol. 169. – P. 121–135. – DOI: 10.1007/978-3-662-53514-1_5.
  6. Production of AB5 materials from spent Ni-MH batteries with further tests of hydrogen storage suitability / M. Mansouri, V. Shtender, C. Tunsu, D. Yilmaz, O. Messaoudi, B. Ebin, M. Sahlberg, M. Petranikova // Journal of Power Sources. – 2022. – Vol. 539. – P. 231459. – DOI: 10.1016/j.jpowsour.2022.231459.
  7. Cui N., He P., Luo J. L. Magnesium-based hydrogen storage materials modified by mechanical alloying // Acta Materialia. – 1999. – Vol. 47. – P. 3737–3743. – DOI: 10.1016/S1359-6454(99)00249-9.
  8. Synthesis and characterization of a MgNi-RE alloy for hydrogen storage / A. Dell'Era, M. Pasquali, S. Vecchio Ciprioti, C. Lupi, A. Brotzu, F. Mura, R. Tuffi // International Journal of Hydrogen Energy. – 2017. – Vol. 42, No. 42. – P. 26333–26342. – DOI: 10.1016/j.ijhydene.2017.08.207.
  9. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage / J. Zhang, Y. Zhu, L. Yao, C. Xu, Y. Liu, L. Liab // Journal of Alloys and Compounds. – 2019. – Vol. 782. – P. 796–823. – DOI: 10.1016/j.jallcom.2018.12.217.
  10. Rondelli G. Corrosion resistance tests on NiTi shape memory alloy // Biomaterials. – 1996. – Vol. 17. – P. 2003–2008. – DOI: 10.1016/0142-9612(95)00352-5.
  11. Solid-gas and electrochemical hydrogenation properties of pseudo-binary (Ti,Zr)Ni intermetallic compounds / B. Guiose, F. Cuevas, B. Décamps, A. Percheron-Guégan // International Journal of Hydrogen Energy. – 2008. – Vol. 33. – P. 5795–5800. – DOI: 10.1016/j.ijhydene.2008.07.056.
  12. Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy / X. Zhao, J. Li, Y. Yao, L. Ma, X. Shen // RSC Advances. – 2012. – Vol. 2. – P. 2149–2153. – DOI: 10.1039/C2RA00846G.
  13. Wasserstoff in intermetallischen phasen am beispiel des systems titannickel-wasserstoff H. Buchner, M. Gutjahr, K.-D. Beccu, H. Säufferer // Zeitschrift Fur Metallkunde. – 1972. – Vol. 63. – P. 497–500.
  14. Mechanism of early capacity loss of Ti2Ni hydrogen-storage alloy electrode / B. Luan, N. Cui, H. Zhao, H. K. Liu, S. X. Dou // Journal of Power Sources – 1995. – Vol. 55. – P. 101–106. – DOI: 10.1016/0378-7753(94)02162-V.
  15. On the charge/discharge behavior of Ti2Ni electrode in 6 M KOH aqueous and deuterium oxide solutions / B. Luan, S. J. Kennedy, H. K. Liu, S. X. Dou // Journal of Alloys and Compounds. – 1998. – Vol. 267. – P. 224–230. – DOI: 10.1016/s0925-8388(97)00461-1.
  16. Hydriding of Intermetallic Compound Ti2Ni / V. N. Fokin, E. E. Fokina, I. I. Korobov, B. P. Tarasov // Russian Journal of Inorganic Chemistry. – 2014. – Vol. 59. – P. 1073–1076. – DOI: 10.1134/S0036023614100076.
  17. Hydrogen-absorbing alloys for the NICKEL–METAL hydride battery / M. Geng, J. Han, F. Feng, D. O. Northwood // International Journal of Hydrogen Energy. – 1998. – Vol. 23. – P. 1055–1060. – DOI: 10.1016/S0360-3199(98)00020-2.
  18. Anik M., Kucukdeveci N. Discharging characteristics of CoB nano powders // International Journal of Hydrogen Energy. – 2013. – Vol. 38. – P. 1501–1509. – DOI: 10.1016/j.ijhydene.2012.11.090.
  19. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling / B. Hosni, X. Li, C. Khaldi, O. ElKedim, J. Lamloumia // Journal of Alloys and Compounds. – 2014. – Vol. 615. – P. 119–125. – DOI: 10.1016/j.jallcom.2014.06.152.
  20. Zadorozhnyi V. Y., Skakov Y. A. & Milovzorov G. S. Appearance of metastable states in Fe-Ti and Ni-Ti systems in the process of mechanochemical synthesis // Metal Science and Heat Treatment. – 2008. – Vol. 50. – Art. No. 404. – DOI: 10.1007/s11041-008-9078-4.
  21. Abdulmenova E. V., Kulkov S. N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation // International Journal of Hydrogen Energy. – 2021. – Vol. 46. – P. 823–836. – DOI: 10.1016/j.ijhydene.2020.09.171.
  22. Nelson J. B., Riley D. P. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals // Proceedings of the Physical Society. – 1945. – Vol. 57. – P. 160–177. – DOI: 10.1088/0959-5309/57/3/302.
  23. Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen // Nachrichten von der Königl Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse. – 1918. – Vol. 2. – P. 98–100.
  24. Влияние механической обработки на структуру и свойства порошка нестехиометрического карбида титана / М. В. Григорьев, Л. М. Молчунова, С. П. Буякова, С. Н. Кульков // Известия высших учебных заведений. Физика. – 2013. – Т. 56. – № 7/2. – С. 206–210.
  25. Аввакумов Е. Г. Механические методы активации химических процессов. – Новосибирск : Наука, 1986. – 305 c.
  26. Hiemenz P. C. Principles of Colloid and Surface Chemistry. – New York : Marcel Dekker Publisher, 1997. – 650 p.
  27. Buyakova S. P., Kul’kov S. N. Effect of mechanical processing of ultrafine ZrO2+3wt%MgO powder on the microstructure of ceramics produced from it // Inorganic Materials. – 2010. – Vol. 46. – P. 1155–1158. – DOI: 10.1134/S0020168510100249.
  28. Effect of titanium additions on structural aspects of porous tini-based materials prepared by diffusion sintering / S. G. Anikeev, M. I. Kaftaranova, V. N. Khodorenko, N. V. Artyukhova, A. S. Garin, V. E. Gyunter // Inorganic Materials. – 2020. – Vol. 56, No. 9. – P. 918–923. – DOI: 10.1134/S0020168520090022.
  29. Hydrogen storage properties of TiFe-based ternary mechanical alloys with cobalt and niobium. A thermochemical approach / E. A. Berdonosova, V. Y. Zadorozhnyy, M. Y. Zadorozhnyy, K. V. Geodakian, M. V. Zheleznyi, A. A. Tsarkov, S. N. Klyamkin // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – P. 29159–29165. – DOI: 10.1016/j.ijhydene.2019.03.057.
  30. Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNix ternary alloys / Z. Zhang, O. Elkedim, M. Balcerzak, M. Jurczyk, R. Chassagnonc // International Journal of Hydrogen Energy. – 2017.– Vol. 42. – P. 23751–23758. – DOI: 10.1016/J.IJHYDENE.2017.03.051.
  31. Binary Alloy Phase Diagrams / T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker // ASM International. – 1990. – Vol. 3. – P. 2874–2876.
  32. Yurko G. A., Barton J. W., Gordon Parr J. The crystal structure of Ti2Ni // Acta Crystallographica. – 1959. – Vol. 12. – P. 909–911. – DOI: 10.1107/S0365110X59002559.
  33. Structural and diffusional effects of hydrogen in TiNi / A. Pelton, C. Trépanier, X. Y. Gong, A. Wick, K. C. Chen // Proceedings of SMST-2003, Monterey, California / ed. by T. W. Duerig, A. Pelton. – Materials Park, 2003. – P. 2–9.
  34. Saito T., Yokoyama T., Takasaki A. Hydrogenation of TiNi shape memory alloy produced by mechanical alloying // Journal of Alloys and Compounds. – 2011. – Vol. 509. – P. S779–S781. – DOI: 10.1016/j.jallcom.2010.10.128.

PDF      

Библиографическая ссылка на статью

Abdulmenova E. V., Buyakova S. P., Kulkov S. N. Increasing Hydrogen Sorption by Ti2ni Powder Using Mechanochemical Alloying // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 3. - P. 25-35. -
DOI: 10.17804/2410-9908.2022.3.025-035. -
URL: http://dream-journal.org/issues/content/article_360.html
(accessed: 06.10.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru