Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

А. V. Chumaevskii, D. V. Indoitu, А. V. Sudarikov, А. P. Zykova, А. R. Dobrovolsky, T. A. Kalashnikova, V. Е. Rubtsov, Е. А. Kolubaev

MECHANICAL PROPERTIES AND STRUCTURE FORMATION OF ALUMINUM-SILICON ALLOYS AFTER FRICTION STIR PROCESSING

DOI: 10.17804/2410-9908.2021.5.044-059

This study presents the results of experimental work on obtaining and investigating samples obtained by multipass friction stir processing of the Al-12%Si and Al-9%Si aluminum-silicon alloys. The results indicate a beneficial effect of friction stir processing on the strength properties of both alloys. The number of tool passes along the processing line has no effect on the mechanical properties and particle size of silicon in the aluminum matrix. The greatest influence on the mechanical properties is exerted by the first pass with the tool. The yield strength of the processed Al-9%Si alloy increases by more than a factor of 1.5, whereas for the Al-12%Si alloy there is no increase in yield strength. The tensile strength of the Al-12%Si alloy increases by 17%, while that of the Al-9%Si alloy increases by 29%. The most significant is the increase in relative elongation to failure, namely 77% for Al-12%Si and 113% for Al-9%Si.

Acknowledgement: The work was performed according to the Government research assignment for ISPMS SB RAS, project FWRW-2021-0012.

Keywords: friction stir processing, Al-Si alloys, tensile strength, relative elongation, hardening of aluminum alloys

References:

  1. Kalashnikova T.A., Gusarova A.V., Chumayevskii A.V., Knyazhev E.O., Shvedov M.A., Vasiliev P.A. Regularities of the formation of materials with a composite structure using additive electron-beam technology, friction stir welding and friction stirring processing. Obrabotka Metallov (Metal Working and Material Science), 2019, vol. 21, no 4, pp. 94–112. DOI: 10.17212/1994-6309-2019-21.4- 94-112. (In Russian).
  2. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports, 2005, vol. 50, pp. 1–78. DOI: 10.1016/j.mser.2005.07.001.
  3. Li K., Liu X., Zhao Y. Research Status and Prospect of Friction Stir Processing Technology. Coatings, 2019, vol. 9, iss. 2, pp. 1–14. DOI: 10.3390/coatings9020129.
  4. Agrawal P., Haridas R.S., Yadav S., Thapliyal S., Gaddam S., Verma R., Mishra R.S. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips. Additive Manufacturing, 2021, vol. 47, pp. 102259. DOI: 10.1016/j.addma.2021.102259.
  5. Zykova A.P., Tarasov S.Y., Chumaevskiy A.V., Kolubaev E.A. A Review of Friction Stir Processing of Structural Metallic Materials: Process Properties, and Methods. Metals, 2020, vol. 10 (6), pp. 1–35. DOI: 10.3390/met10060772.
  6. Ma Z.Y. Friction Stir Processing Technology: A Review. Metallurgical and Materials Transactions A, 2008, vol. 39, pp. 642–658. DOI: 10.1007/s11661-007-9459-0.
  7. Kalashnikov K.N., Tarasov S.Y., Chumaevskii A.V., Fortuna S.V., Eliseev A.A., Ivanov A.N. Towards aging in a multipass friction stir–processed АА2024. International Journal of Advanced Manufacturing Technology, 2019, vol. 103, iss. 5–8, pp. 2121–2132. DOI:10.1007/S00170-019-03631-3.
  8. Hsu C.J., Kao P.W., Ho N.J. Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing. Materials Letters, 2007, vol. 61, iss. 6, pp. 1315–1318. DOI: 10.1016/J.MATLET.2006.07.021.
  9. Dolatkhah A., Golbabaei P., Besharati Givi M.K., Molaiekiya F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fab-ricated via friction stir processing. Materials and Design, 2012, vol. 37, pp. 458–464. DOI: 10.1016/J.MATDES.2011.09.035.
  10. Zhao H., Pan Q., Qin Q., Wu Y., Su X. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Materials Science & Engineering A, 2019, vol. 751, pp. 70–79. DOI: 10.1016/J.MSEA.2019.02.064.
  11. Su J.Q., Nelson T.W., Colin S.J. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering, 2005, vol. 405, iss. 1–2, pp. 277–286. DOI: 10.1016/J.MSEA.2005.06.009.
  12. Manochehrian A., Heidarpour A., Mazaheri Y., Ghasemi S. On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing. Surface & Coatings Technology, 2019, vol. 377, pp. 124884. DOI: 10.1016/J.SURFCOAT.2019.08.013.
  13. Jain V.K.S., Varghese J., Muthukumaran. S. Effect of First and Second Passes on Microstructure and Wear Properties of Titanium Dioxide-Reinforced Aluminum Surface Composite via Friction Stir Processing. Arabian Journal for Science and Engineering, 2019, vol. 44, pp. 949–957. DOI: 10.1007/S13369-018-3312-1.
  14. Darzi Bourkhani R., Eivani A.R., Nateghi H.R. Through-thickness inhomogeneity in microstructure and tensile properties and tribological performance of friction stir processed AA1050-Al2O3 nanocomposite. Composites Part B, 2019, vol. 174, pp. 107061. DOI: 10.1016/J.COMPOSITESB.2019.107061.
  15. Satish Kumar T., Suganya Priyadharshini G., Shalini S., Krishna Kumar K., Subramanian R. Characterization of NbC-Reinforced AA7075 Alloy Composites Produced Using Friction Stir Processing. Transactions of the Indian Institute of Metals, 2019, vol. 72, iss. 6, pp. 1593–1596. DOI: 10.1007/s12666-019-01566-7.
  16. Deore H.A., Mishra J., Rao A.G., Mehtani H., Hiwarkar V.D. Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites. Surface & Coatings Technology, 2019, vol. 374, pp. 52–64. DOI: 10.1016/J.SURFCOAT.2019.05.048.
  17. Zhang S., Chen G., Wei J., Liu Y., Xie R., Liu Q., Zeng S., Zhang G., Shi Q. Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites. Journal of Alloys and Com-pounds, 2019, vol. 798, pp. 523-530. DOI: 10.1016/J.JALLCOM.2019.05.269.
  18. Abrahams R., Mikhail J., Fasihi P. Effect of friction stir process parameters on the me-chanical properties of 5005-H34 and 7075-T651 aluminium alloys. Materials Science & Engineering A, 2019, vol. 751, pp. 363–373. DOI: 10.1016/J.MSEA.2019.02.065.
  19. Ramesh K.N., Pradeep S., Pancholi V. Multipass Friction-Stir Processing and its Effect on Mechanical Properties of Aluminum Alloy 5086. Metallurgical and Materials Transactions A, 2012, vol. 43, pp. 4311–4319. DOI:10.1007/s11661-012-1232-3.
  20. Indoitu D.V., Gusarova A.V., Zykova A.P., Kalashnikova T.A., Chumaevskii A.V., Gurianov D.A., Beloborodov V.A. Friction Stir Processing Regularities of Cast Aluminum Alloy AlSi12. Journal of Physics: Conference Series, 2021, vol. 1989 (1), pp. 012030. DOI: 10.1088/1742-6596/1989/1/012030.
  21. Abbadi M., Hähner P., Zeghloul A. On the characteristics of Portevin–Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing. Materials Science and Engineering A, 2002, vol. 337, iss. 1–2, pp. 194–201. DOI: 10.1016/S0921-5093(02)00036-9.

А. В. Чумаевский, Д. В. Индоиту, А. В. Судариков, А. П. Зыкова, А. Р. Добровольский, Т. А. Калашникова, В. Е. Рубцов, Е. А. Колубаев

ФОРМИРОВАНИЕ СТРУКТУРЫ И МЕХАНИЧЕСКИЕ СВОЙСТВА АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ ПОСЛЕ ФРИКЦИОННОЙ ПЕРЕМЕШИВАЮЩЕЙ ОБРАБОТКИ

В работе приведены результаты экспериментальной работы по получению и исследованию образцов, полученных методом многопроходной фрикционной перемешивающей обработки алюминиево-кремниевых сплавов АК12 и АК9. Полученные результаты свидетельствуют о положительном влиянии на прочностные показатели обоих сплавов фрикционной перемешивающей обработки. Количество проходов инструментом вдоль линии обработки не существенно влияет на механические свойства и размер частиц кремния в алюминиевой матрице. Наибольшее влияние на механические свойства оказывает первый проход инструментом. Увеличение предела текучести материала сплава АК9 происходит более чем в 1,5 раза, в то время как для сплава АК12 увеличения предела текучести не происходит. Значения предела прочности сплава АК12 повышаются на величину до 17%, в то время как у сплава АК9 на величину до 29%. Наиболее значительным является увеличение относительного удлинения после разрыва на 77% для сплава АК12 и на 113% для сплава АК9

Благодарность: Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012

Ключевые слова: фрикционная перемешивающая обработка, алюминиево-кремниевые сплавы, прочность и пластичность металлов и сплавов, упрочнение алюминиевых сплавов

Библиография:

  1. Закономерности формирования материалов с композитной структурой с использованием аддитивной электронно-лучевой технологии, сварки трением с перемешиванием и фрикционной перемешивающей обработки / Т. А. Калашникова, А. В. Гусарова, А. В. Чумаевский, Е. О. Княжев, М. А. Шведов, П. А. Васильев // Обработка металлов (технология - оборудование - инструменты). – 2019. – Т. 21, № 4. – С. 94–112.
  2. Mishra R. S., Ma Z. Y. Friction stir welding and processing // Materials Science and Engineering: R: Reports. – 2005. – Vol. 50. – P. 1–78. – DOI: 10.1016/j.mser.2005.07.001.
  3. Li K., Liu X., Zhao Y. Research Status and Prospect of Friction Stir Processing Technology // Coatings. – 2019. – Vol. 9, No. 2. – P. 1–14. – DOI: 10.3390/coatings9020129.
  4. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips / P. Agrawal, R. S. Haridas, S. Yadav, S. Thapliyal, S. Gaddam, R. Verma, R. S. Mishra // Additive Manufacturing. – 2021. – Vol. 47. – P. 102259. – DOI: 10.1016/j.addma.2021.102259.
  5. A Review of Friction Stir Processing of Structural Metallic Materials: Process Properties, and Method / A. P. Zykova, S. Y. Tarasov, A. V. Chumaevskiy, E. A. Kolubaev // Metals. – 2020. – Vol. 10. – DOI: 10.3390/met10060772.
  6. Ma Z. Y. Friction Stir Processing Technology: A Review // Metallurgical and Materials Transactions A. – 2008. – Vol. 39. – P. 642–658. – DOI: 10.1007/s11661-007-9459-0.
  7. Towards aging in a multipass friction stir–processed АА2024 / K. N. Kalashnikov, S. Y. Tarasov, A. V. Chumaevskii, S. V. Fortuna, A. A. Eliseev, A. N. Ivanov // International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 103, Nos. 5–8. – P. 2121–2132. – DOI:10.1007/S00170-019-03631-3.
  8. Hsu C. J., Kao P. W., Ho N. J. Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing // Materials Letters. – 2007. – Vol. 61, No. 6. – P. 1315–1318. – DOI: 10.1016/J.MATLET.2006.07.021.
  9. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fab-ricated via friction stir processing / A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, F. Molaiekiya // Materials and Design. – 2012. – Vol. 37. – P. 458–464. – DOI: 10.1016/J.MATDES.2011.09.035.
  10. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy / H. Zhao, Q. Pan, Q. Qin, Y. Wu, X. Su // Materials Science & Engineering A. – 2019. – Vol. 751. – P. 70–79. – DOI: 10.1016/J.MSEA.2019.02.064.
  11. Su J.-Q., Nelson T. W., Colin S. J. Microstructure evolution during FSW/FSP of high strength aluminum alloys // Materials Science and Engineering. – 2005. – Vol. 405, iss. 1–2. – P. 277–286. – DOI: 10.1016/J.MSEA.2005.06.009.
  12. On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing / A. Manochehrian, A. Heidarpour, Y. Mazaheri, S. Ghasemi // Surface & Coatings Technology. – 2019. – Vol. 377. – P. 124884. – DOI: 10.1016/J.SURFCOAT.2019.08.013.
  13. Jain V. K. S., Varghese J., Muthukumaran S. Effect of First and Second Passes on Microstructure and Wear Properties of Titanium Dioxide-Reinforced Aluminum Surface Composite via Friction Stir Processing // Arabian Journal for Science and Engineering. – 2019. – Vol. 44. – P. 949–957. – DOI: 10.1007/S13369-018-3312-1.
  14. Bourkhani Darzi R., Eivani A. R., Nateghi H. R. Through-thickness inhomogeneity in microstructure and tensile properties and tribological performance of friction stir processed AA1050-Al2O3 nano-composite // Composites Part B. – 2019. – Vol. 174. – P. 107061. – DOI: 10.1016/J.COMPOSITESB.2019.107061.
  15. Characterization of NbC-Reinforced AA7075 Alloy Composites Produced Using Friction Stir Processing / T. Satish Kumar, G. Suganya Priyadharshini, S. Shalini, K. Krishna Kumar, R. Subramanian // Transactions of the Indian Institute of Metals. – 2019. – Vol. 72, No. 6. – P. 1593–1596. – DOI: 10.1007/s12666-019-01566-7.
  16. Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites / H. A. Deore, J. Mishra, A. G. Rao, H. Mehtani, V. D. Hiwarkar // Surface & Coatings Technology. – 2019. – Vol. 374. – P. 52–64. – DOI: 10.1016/J.SURFCOAT.2019.05.048.
  17. Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites / S. Zhang, G. Chen, J. Wei, Y. Liu, R. Xie, Q. Liu, S. Zeng, G. Zhang, Q. Shi // Journal of Alloys and Compounds. – 2019. – Vol. 798. – P. 52–530. – DOI: 10.1016/J.JALLCOM.2019.05.269.
  18. Abrahams R., Mikhail J., Fasihi P. Effect of friction stir process parameters on the me-chanical properties of 5005-H34 and 7075-T651 aluminium alloys // Materials Science & Engineering A. – 2019. – Vol. 751. – P. 363–373. – DOI: 10.1016/J.MSEA.2019.02.065.
  19. Ramesh K. N., Pradeep S., Pancholi V. Multipass Friction-Stir Processing and its Effect on Mechanical Properties of Aluminum Alloy 5086 // Metallurgical and Materials Transactions A. – 2012. – Vol. 43. – P. 4311–4319. – DOI:10.1007/s11661-012-1232-3.
  20. Friction Stir Processing Regularities of Cast Aluminum Alloy AlSi12 / D. V. Indoitu, A. V. Gusarova, A. P. Zykova, T. A. Kalashnikova, A. V. Chumaevskii, D. A. Gurianov, V. A. Beloborodov // Journal of Physics: Conference Series. – 2021. – Vol. 1989, No. 1. – P. 012030. – DOI: 10.1088/1742-6596/1989/1/012030.
  21. Abbadi M., Hähner P., Zeghloul A. On the characteristics of Portevin–Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing // Materials Science and Engineering A. – 2002. – Vol. 337, iss. 1–2. – P. 194–201. – DOI: 10.1016/S0921-5093(02)00036-9.

PDF      

Библиографическая ссылка на статью

Mechanical Properties and Structure Formation of Aluminum-Silicon Alloys after Friction Stir Processing / А. V. Chumaevskii, D. V. Indoitu, А. V. Sudarikov, А. P. Zykova, А. R. Dobrovolsky, T. A. Kalashnikova, V. Е. Rubtsov, Е. А. Kolubaev // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 5. - P. 44-59. -
DOI: 10.17804/2410-9908.2021.5.044-059. -
URL: http://dream-journal.org/issues/content/article_341.html
(accessed: 10.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru