Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Gorshkov, E. Yu. Prosviryakov

ANALYTICAL STUDY OF THE EKMAN ANGLE FOR THE BENARD–MARANGONI CONVECTIVE FLOW OF VISCOUS INCOMPRESSIBLE FLUID

DOI: 10.17804/2410-9908.2021.4.34-49

The paper considers the convective flow of a viscous incompressible fluid over a rotating surface. It studies the angle between the fluid velocity vector in the upper layer and the temperature gradient vector on the free surface. For the study, an analytical solution to the Oberbeck–Boussinesq equations is constructed, which describes the stratified Ekman flow taking into account two components of the Coriolis force. The temperature gradient and the conditions of Marangoni thermocapillary convection are set at the upper (free) boundary, and the condition of fluid adhesion is set on the lower (solid) boundary. The representation of velocities in the form of linear functions of horizontal coordinates is used. It is shown that, when the flow depth tends to infinity, the angle between the upper layer fluid velocity vector and the temperature gradient vector tends to π/2.

Keywords: analytical solution, thermocapillary convection, Ekman flow

Bibliography:

  1. Pedlosky J. Geophysical fluid dynamics, Berlin, New York, Springer, 1987.
  2. Gill A.E. Atmosphere-Ocean Dynamics, New York, Academic Press, 1982.
  3. Ekman V.W. On the influence of the Earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys., 1905, vol. 2, No. 11, pp. 1–52.
  4. Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes Equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, No. 5, pp. 642–662. DOI: 10.1134/S0040579509050066.
  5. Burmasheva N.V., Prosviryakov E.Yu. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, No. 2, pp. 79–87. (In Russian).
  6. Burmasheva N.V., Prosviryakov E.Yu. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 32, pp. 33–48. DOI: 10.26516/1997-7670.2020.32.33. (In Russian).
  7. Felzenbaum A.I. Teoreticheskie osnovy i metody rascheta ustanovivshikhsya morskikh techeniy [Theoretical Foundations and Methods for Calculating Steady Sea Currents]. AN SSSR Publ., 1960, 127 p. (In Russian).
  8. Dolgansky F.V. Lektsii po geophizicheckoy gidrodinamike [Lectures on Geophysical Hidrodynamics]. Мoscow, IVM RAN Publ, 2006, 378 p. (In Russian).
  9. Korotaev G.K., Mikhaylova E.N., Shapiro N.B. Teoriya ekvatorialnykh protivotecheniy v Mirovom okeane [Theory of Equatorial Countercurrents in the World Ocean]. Kiev, Nauk. Dumka Publ., 1986, 208 p. (In Russian).
  10. Zyryanov V.N. Teoriya ustanovivshchikhsya okeanicheskikh techeniy [Theory of Steady Ocean Currents]. Leningrad, Gidrometeoizdat Publ., 1985. (In Russian).
  11. Aristov S.N., Prosviryakov E.Yu. Aristov S.N., Prosviryakov E.Y. On laminar flows of planar free convection. Rus. J. Nonlin. Dyn., 2013, vol. 9, No. 4, pp. 651–657. DOI: 10.20537/nd1304004. (In Russian).
  12. Aristov S.N., Shvarts K.G. Vikhrevye techeniya advektivnoy prirody vo vrashchayushchemsya sloe zhidkosti [Vortical Flows of Advective Nature in a Rotating Fluid Layer]. Perm, Perm. Gos. Univ. Publ., 2006, 154 p. (In Russian).
  13. Aristov S.N., Shvarts K.G. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Vortical Flows in Thin Fluid Layers]. Kirov, VyatGU Publ., 2011. (In Russian).
  14. Aristov S.N., Shvarts K.G. Advective flow in a rotating liquid film. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, No. 1, pp. 188–194. DOI: 10.1134/S0021894416010211.
  15. Ingel L.Kh., Aristov S.N. The class of exact solutions of nonlinear problems on thermal circulation associated with volumetric heat release in the atmosphere. Tr. In-ta Eksperim. Meteorol., 1996, No. 27 (162), pp. 142–157. (In Russian).
  16. Gorshkov A.V., Prosviryakov E.Yu. Convective flow in the solid rotation of a viscous incompressible fluid. AIP Conference Proceedings, 2017, vol. 1915, 040020. DOI: 10.1063/1.5017368.
  17. Gorshkov A.V., Prosviryakov E.Yu. Ekman Convective Layer Flow of a Viscous Incompressible Fluid. Izvestiya, Atmospheric and Oceanic Physics, 2018, vol. 54, No. 2, pp. 189–195. DOI: 10.1134/S0001433818020081.
  18. Gorshkov A.V. Prosviryakov E.Yu. Analytical Study of the Ekman Angle for the Isothermal Flow of a Viscous Incompressible Fluid in View of the Navier Boundary Condition. AIP Conference Proceedings, 2020, vol. 2315, 020018. DOI: 10.1063/5.0036889.
  19. Constantin A., Johnson R.S. Atmospheric Ekman flows with variable eddy viscosity. Boundary-Layer Meteorology, 2019, vol. 170, pp. 395–414. DOI: 10.1007/s10546-018-0404-0.
  20. Shrira V.I., Almelah R.B. Upper-ocean Ekman current dynamics: a new perspective. Journal of Fluid Mechanics, 2020, vol. 887, A24. DOI: 10.1017/jfm.2019.1059.
  21. Fečkan M., Guan Y., O’Regan D., Wang J.R. Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows. Monatshefte für Mathematik, 2020, 193, pp. 623–636. DOI: 10.1007/s00605-020-01414-7.
  22. Ortiz-Tarin J.L., Lee S., Flores O., Sarkar S. Global modes and large-scale structures in an Ekman boundary layer. Journal of Physics: Conference Series, 2020, vol. 1522, 012011. DOI: 10.1088/1742-6596/1522/1/012011.
  23. Prosviryakov E.Y. New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates. Theoretical Foundations of Chemical Engineering, 2019, vol. 53, No. 1, pp. 107–114. DOI: 10.1134/S0040579518060088.
  24. Aristov S.N., Prosviryakov E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, vol. 50, No. 3, pp. 286–293. DOI: 10.1134/S0040579516030027.
  25. Burmasheva N.V., Prosviryakov E.Yu. Isothermal layered flows of a viscous incompressible fluid with spatial acceleration in the case of three Coriolis parameters. Diagnostics, Resource and Mechanics of materials and structures, 2020, iss. 3, pp. 29–46. DOI: 10.17804/2410-9908.2020.3.029-046. Available at: http://dream-journal.org/issues/2020-3/2020-3_291.html
  26. Burmasheva N.V., Privalova V.V., Prosviryakov E.Yu. Layered Marangoni convection with the Navier slip condition. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, vol. 46, iss. 1, No. 55. DOI: 10.1007/s12046-021-01585-5.
  27. Ershkov Sergey V., Prosviryakov Evgeniy Yu., Burmasheva Natalya V., and Christianto Victor. Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 2021, vol. 53, No. 4, pp. 044501. DOI:10.1088/1873-7005/ac10f0.

А. В. Горшков, Е.Ю. Просвиряков

АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ УГЛА ЭКМАНА ДЛЯ КОНВЕКТИВНОГО ТЕЧЕНИЯ БЕНАРА-МАРАНГОНИ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ

В работе рассмотрено конвективное течение вязкой несжимаемой жидкости по вращающейся поверхности. Исследован угол между вектором скорости жидкости в верхнем слое и вектором градиента температуры на свободной поверхности. Для исследования построено аналитическое решение уравнений Обербека – Буссинеска, описывающее слоистое течение Экмана с учетом двух компонент силы Кориолиса. На верхней (свободной) границе задан градиент температуры и условия термокапиллярной конвекции Марангони. На нижней (твердой) границе задано условие прилипания жидкости. Использовано представление скоростей в виде линейных функций горизонтальных координат. Показано, что при стремлении глубины потока к бесконечности угол между вектором скорости жидкости в верхнем слое и вектором градиента температуры стремится к π/2.

Ключевые слова: аналитическое решение, термокапиллярная конвекция, течение Экмана

Библиография:

  1. Pedlosky J. Geophysical fluid dynamics. – Berlin, New York : Springer, 1987.
  2. Gill A. E. Atmosphere-Ocean Dynamics. – New York : Academic Press, 1982.
  3. Ekman V. W. On the influence of the Earth’s rotation on ocean-currents // Ark. Mat. Astron. Fys. – 1905. – Vol. 2, No. 11. – P. 1–52.
  4. Aristov S. N., Knyazev D. V., Polyanin A. D. Exact solutions of the Navier-Stokes Equations with the linear dependence of velocity components on two space variables // Theoretical Foundations of Chemical Engineering. – 2009. – Vol. 43, No. 5. – P. 642–662. – DOI: 10.1134/S0040579509050066.
  5. Бурмашева Н. В., Просвиряков Е. Ю. Точное решение уравнений Навье–Стокса, описывающее пространственно неоднородные течения вращающейся жидкости // Труды Института математики и механики УрО РАН. – 2020. – Т. 26, вып. 2. – C. 79–87.
  6. Бурмашева Н. В., Просвиряков Е. Ю. Класс точных решений для двумерных уравнений геофизической гидродинамики с двумя параметрами Кориолиса // Известия Иркутского государственного университета. Серия Математика. – 2020. – Т. 32. – С. 33–48. – DOI: 10.26516/1997-7670.2020.32.33.
  7. Фельзенбаум А. И. Теоретические основы и методы расчета установившихся морских течений. – М. : Изд-во Акад. наук СССР, 1960. – 127 с.
  8. Должанский Ф. В. Лекции по геофизической гидродинамике. – М. : ИВМ РАН, 2006. – 378 с.
  9. Коротаев Г. К., Михайлова Э. Н., Шапиро Н. Б. Теория экваториальных противотечений в Мировом океане. – Киев : Наук. думка, 1986. – 208 с.
  10. Зырянов В. Н. Теория установившихся океанических течений. – Л. : Гидрометеоиздат, 1985. – 248 с.
  11. Аристов С. Н., Просвиряков Е. Ю. О слоистых течениях плоской свободной конвекции // Нелинейная динамика. – 2013. – Т. 9, № 3. – С. 3–9.
  12. Аристов С. Н., Шварц К. Г. Вихревые течения адвективной природы во вращающемся слое жидкости. – Пермь : ПГУ, 2006. – 155 с.
  13. Аристов С. Н., Шварц К. Г. Вихревые течения в тонких слоях жидкости. – Киров : ВятГУ, 2011. – 207 с.
  14. Aristov S. N., Shvarts K. G. Advective flow in a rotating liquid film // Journal of Applied Mechanics and Technical Physics. – 2016. – Vol. 57, No. 1. – P. 188–194. – DOI: 10.1134/S0021894416010211.
  15. Ингель Л. Х., Аристов С. Н. Класс точных решений нелинейных задач о термических циркуляциях, связанных с объемным тепловыделением в атмосфере // Тр. Ин-та экспериментальной метеорологии. – 1996. – Вып. 27 (162). – С. 142–157.
  16. Gorshkov A. V., Prosviryakov E. Yu. Convective flow in the solid rotation of a viscous incompressible fluid // AIP Conference Proceedings. – 2017. – 1915. – 040020. – DOI: 10.1063/1.5017368.
  17. Gorshkov A. V., Prosviryakov E. Yu. Ekman Convective Layer Flow of a Viscous Incompressible Fluid // Izvestiya, Atmospheric and Oceanic Physics. – 2018. – Vol. 54, No. 2. – P. 189–195. – DOI: 10.1134/S0001433818020081.
  18. Gorshkov A. V. Prosviryakov E. Yu. Analytical Study of the Ekman Angle for the Isothermal Flow of a Viscous Incompressible Fluid in View of the Navier Boundary Condition // AIP Conference Proceedings. – 2020. – Vol. 2315. – 020018. – DOI: 10.1063/5.0036889.
  19. Constantin A., Johnson R. S. Atmospheric Ekman flows with variable eddy viscosity // Boundary-Layer Meteorology. – 2019. – Vol. 170. – P. 395–414. – DOI: 10.1007/s10546-018-0404-0.
  20. Shrira V. I., Almelah R. B. Upper-ocean Ekman current dynamics: a new perspective // Journal of Fluid Mechanics. – 2020. – Vol. 887. – A 24. – DOI: 10.1017/jfm.2019.1059.
  21. Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows / M. Fečkan, Y. Guan, D. O’Regan, J. R. Wang // Monatshefte für Mathematik. – 2020. – 193. – P. 623–636. – DOI: 10.1007/s00605-020-01414-7.
  22. Global modes and large-scale structures in an Ekman boundary layer / J. L. Ortiz-Tarin, S. Lee, O. Flores, S. Sarkar // Journal of Physics: Conference Series. – 2020. – Vol. 1522. – P. 012011. – DOI: 10.1088/1742-6596/1522/1/012011.
  23. Prosviryakov E. Y. New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates // Theoretical Foundations of Chemical Engineering. – 2019. – Vol. 53, No. 1. –P. 107–114. – DOI: 10.1134/S0040579518060088.
  24. Aristov S. N., Prosviryakov E. Y. A new class of exact solutions for three-dimensional thermal diffusion equations // Theoretical Foundations of Chemical Engineering. – 2016. – Vol. 50, No. 3. – P. 286–293. – DOI: 10.1134/S0040579516030027.
  25. Burmasheva N. V., Prosviryakov E. Yu. Isothermal layered flows of a viscous incompressible fluid with spatial acceleration in the case of three Coriolis parameters // Diagnostics, Resource and Mechanics of materials and structures. – 2020. – Iss. 3. – P. 29–46. – DOI: 10.17804/2410-9908.2020.3.029-046. – URL: http://dream-journal.org/issues/2020-3/2020-3_291.html
  26. Burmasheva N. V., Privalova V. V., Prosviryakov E. Yu. Layered Marangoni convection with the Navier slip condition // SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES. – 2021. – Vol. 46, iss. 1, No. 55. – DOI: 10.1007/s12046-021-01585-5.
  27. Towards understanding the algorithms for solving the Navier–Stokes equations / Sergey V. Ershkov, Evgeniy Yu. Prosviryakov, Natalya V. Burmasheva, and Victor Christianto // Fluid Dynamics Research. – 2021. – Vol. 53, No. 4. – P. 044501. – DOI:10.1088/1873-7005/ac10f0.

PDF      

Библиографическая ссылка на статью

Gorshkov A. V., Prosviryakov E. Yu. Analytical Study of the Ekman Angle for the Benard–marangoni Convective Flow of Viscous Incompressible Fluid // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 4. - P. 34-48. -
DOI: 10.17804/2410-9908.2021.4.34-49. -
URL: http://dream-journal.org/issues/content/article_340.html
(accessed: 14.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru