Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

D. I. Kryuchkov, A. G. Zalazinskiy

MODEL REPRESENTATION OF AN AXISYMMETRIC STEEL-ALUMINUM SAMPLE FOR SIMULATION OF A SEPARATION TEST

DOI: 10.17804/2410-9908.2021.1.026-037

The object of research is a bimetallic composite material with a thin intermediate layer of aluminum. The aim of the work is to determine the features of the stress-strain state at the interlayer boundaries of a steel-aluminum composite material with a thin layer using the computational experiment method and to calculate separation resistance using the energy criterion. The stress-strain state along the boundaries of the joint at delamination is determined from the results of modeling the deformation of axisymmetric samples made of a steel-aluminum bimetallic composite material with a thin intermediate layer of aluminum. A series of computational experiments with varying the critical rate of elastic energy release under separation conditions, including under the combined influence of low temperatures and static loads, is implemented. The energy criterion is used to evaluate the stress level that leads to the separation of the bimetallic compound. The dependence of the separation resistance along the ring contour on the critical rate of elastic energy release, which is variable in the range of 0.1 to 0.5 N/mm, is calculated. It is established that, for the studied variants of the computational experiment, a rigid stress state with a predominance of normal tensile stresses is realized at the place of delamination onset.

Acknowledgement: We appreciate the effort of Dr. Berezin, senior professor of the Chair of Information Tech-nologies and Design Automation, UrFU, in making computational experiments.

Keywords: simulation modeling, deformation, axisymmetric sample, steel-aluminum composite material, joint boundary, crack

References:

  1. Krueger R. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 2004, 57 (2), pp. 109–143. DOI: 10.1115/1.1595677.
  2. Valvo P.S. A Physically Consistent Virtual Crack Closure Technique for I/II/III Mixed-mode Fracture Problems. Procedia Materials Science, 2014, vol. 3, pp. 1983–1987. DOI: 10.1016/j.mspro.2014.06.319.
  3. Liu P.F., Hou S.J., Chu J.K., Hu X.Y., Zhou C.L., Liu Y.L., Zheng J.Y., Zhao A., Yan L. Finite element analysis of post buckling and delamination of composite laminates using virtual crack closure technique. Composite Structures, 2011, vol. 93, iss. 5, pp. 1549–1560. DOI: 10.1016/j.compstruct.2010.12.006.
  4. Xie D., Biggers S. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Engineering Fracture Mechanics, 2006, vol. 73, iss. 6, pp. 771–785. DOI: 10.1016/j.engfracmech.2005.07.013.
  5. Perov S.N., Chernyakin S.A. Research the applicability of finite element method for estimation the parameters of fracture mechanics of constructive elements from composites. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 2013, vol. 15, no. 4 (2), pp. 480–483. (In Russian).
  6. Chernyakin S.A., Skvortsov Y.V. Analysis of delamination propagation in composite structures. Vestnik SibGAU, 2014, no. 4 (56), pp. 249–255. (In Russian).
  7. Glushkov S.V., Skvortsov Y.V., Perov S.N., Chernyakin S.A. Finite element analysis of panels with surface cracks. AIP Conference Proceedings, 2017, vol. 1798, 020059. DOI: 10.1063/1.4972651.
  8. Marjanović M., Meschke G., Vuksanović D. A finite element model for propagating delamination in laminated composite plates based on the Virtual Crack Closure method. Composite Structures, 2016, vol. 150, pp. 8–19. DOI: 10.1016/j.compstruct.2016.04.044.
  9. Liu P.F., Islam M.M. A nonlinear cohesive model for mixed-mode delamination of composite laminates. Composite Structures, 2013, vol. 106, pp. 47–56. DOI: 10.1016/j.compstruct.2013.05.049.
  10. Harper P.W., Hallett S.R. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics, 2008, vol. 75, pp. 4774–4792. DOI: 10.1016/j.engfracmech.2008.06.004.
  11. Azimi M., Mirjavadi S.S., Asli S.A., Hamouda A.M.S. Fracture Analysis of a Special Cracked Lap Shear (CLS) Specimen with Utilization of Virtual Crack Closure Technique (VCCT) by Finite Element Methods. Journal of Failure Analysis and Prevention, 2017, vol. 17, iss. 2, pp. 304–314. DOI: 10.1007/s11668-017-0243-1.
  12. Bonhomme J., Argüelles A., Viña J., Viña I. Numerical and experimental validation of computational models for mode I composite fracture failure. Computational Materials Science, 2009, vol. 45, pp. 993–998. DOI: 10.1016/j.commatsci.2009.01.005.
  13. Shokrieh M.M., Rajabpour-Shirazi H., Heidari-Rarani M., Haghpanahi M. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Computational Materials Science, 2012, vol. 65, pp. 66–73. DOI: 10.1016/j.commatsci.2012.06.025.
  14. Martinez X., Rastellini F., Oller S., Floresa F., Oñate E. Computationally optimized formulation for the simulation of composite materials and delamination failures. Composites Part B: Engineering, 2011, vol. 42, iss. 2, pp. 134–144. DOI: 10.1016/j.compositesb.2010.09.013.
  15. Skvortsov Yu.V., Chernyakin S.A., Glushkov S.V., Perov S.N. Simulation of fatigue delamination growth in composite laminates under mode I loading. Applied Mathematical Modelling, 2016, vol. 40, pp. 7216–7224. DOI: 10.1016/j.apm.2016.03.019.
  16. Amiri-Rad A., Mashayekhi M., van der Meer F.P. Cohesive zone and level set method for simulation of high cycle fatigue delamination in composite materials. Composite Structures, 2017, vol. 160, pp. 61–69. DOI: 10.1016/j.compstruct.2016.10.041.
  17. May M., Hallett S.R. An advanced model for initiation and propagation of damage under fatigue loading – part I: Model formulation. Composite Structures, 2011, vol. 93, pp. 2340–2349. DOI: 10.1016/j.compstruct.2011.03.022.
  18. Smirnov S.V., Myasnikova M.V., Igumnov A.S. Determination of the local shear strength of a layered metal composite material with a ductile interlayer after thermocycling. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 4, pp. 46–56. DOI: 10.17804/2410-9908.2016.4.046-056.
  19. Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of Fracture Mechanics]. Moscow, Nauka Publ., 1974, 312 p. (In Russian).

Д. И. Крючков, А. Г. Залазинский

МОДЕЛЬНОЕ ПРЕДСТАВЛЕНИЕ СТАЛЕАЛЮМИНИЕВОГО ОСЕСИММЕТРИЧНОГО ОБРАЗЦА ДЛЯ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ИСПЫТАНИЯ НА ОТРЫВ

Объектом исследования является модель биметаллического композитного материала с тонким промежуточным слоем из алюминия. Цель работы – с использованием метода вычислительного эксперимента определить особенности напряженно-деформированного состояния на межслойных границах сталеалюминиевого композитного материла с тонкой прослойкой, и рассчитать сопротивление отрыва с использованием энергетического критерия. По результатам моделирования процесса деформирования осесимметричных образцов из сталеалюминиевого биметаллического композитного материала с тонким промежуточным слоем алюминия определено напряженно-деформированное состояние по границам соединения, при котором происходит расслоение. Реализована серия вычислительных экспериментов с варьированием критической скорости высвобождения упругой энергии в условиях отрыва, в том числе в условиях совместного влияния низких температур и статических нагрузок. С использованием энергетического критерия оценивается уровень напряжений, приводящий к расслоению биметаллического соединения. Рассчитана зависимость сопротивления отрыву по кольцевому контуру от величины критической скорости высвобождения упругой энергии, варьируемой в диапазоне 0,1–0,5 Н/мм. Установлено, что для исследованных вариантов вычислительного эксперимента в месте начала расслоения реализуется жесткое напряженное состояние с преобладанием нормальных растягивающих напряжений.

Благодарность: Выражаем благодарность в проведении вычислительных экспериментов старшему преподавателю кафедры информационных технологий и автоматизации проектирования УрФУ к.т.н. И.М. Березину.

Ключевые слова: имитационное моделирование, деформирование, осесимметричный образец, сталеалюминиевый композитный материал, граница соединения, трещина

Библиография:

  1. Krueger R. Virtual crack closure technique: History, approach, and applications // Applied Mechanics Reviews. – 2004. – 57 (2). – P. 109–143. – DOI: 10.1115/1.1595677.
  2. Valvo P. S. A Physically Consistent Virtual Crack Closure Technique for I/II/III Mixed-mode Fracture Problems // Procedia Materials Science. – 2014. – Vol. 3. – P. 1983–1987. – DOI: 10.1016/j.mspro.2014.06.319.
  3. Finite element analysis of post buckling and delamination of composite laminates using virtual crack closure technique / P. F. Liu, S. J. Hou, J. K Chu., X. Y. Hu, C. L. Zhou, Y. L. Liu, J. Y. Zheng, A. Zhao, L. Yan // Composite Structures. – 2011. – Vol. 93, iss. 5. – P. 1549–1560. – DOI: 10.1016/j.compstruct.2010.12.006.
  4. Xie D., Biggers S. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation // Engineering Fracture Mechanics. – 2006. – Vol. 73, iss. 6. – P. 771–785. – DOI: 10.1016/j.engfracmech.2005.07.013.
  5. Перов С. Н., Чернякин С. А. Исследование применимости метода конечных  элементов для оценки параметров механики разрушения конструктивных элементов из композиционных материалов // Известия Самарского научного центра Российской академии наук. – 2013. – Т. 15, № 4 (2). – С. 480–483.
  6. Чернякин С. А., Скворцов Ю. В. Анализ роста расслоений в композитных конструкциях // Вестник Сибирского государственного аэрокосмического университета им. академика М. Ф. Решетнева. – 2014. – № 4 (56). – С. 249–255.
  7. Finite element analysis of panels with surface cracks / S. V. Glushkov, Y. V. Skvortsov, S. N. Perov, S. A. Chernyakin // AIP Conference Proceedings. – 2017. – 1798. – P. 020059. – DOI: 10.1063/1.4972651.
  8. Marjanović M., Meschke G., Vuksanović D. A finite element model for propagating delamination in laminated composite plates based on the Virtual Crack Closure method // Composite Structures. – 2016. – Vol. 150. – P. 8–19. – DOI: 10.1016/j.compstruct.2016.04.044.
  9. Liu P. F., Islam M. M. A nonlinear cohesive model for mixed-mode delamination of composite laminates // Composite Structures. – 2013. – Vol. 106. – P. 47–56. – DOI: 10.1016/j.compstruct.2013.05.049.
  10. Harper P. W., Hallett S. R. Cohesive zone length in numerical simulations of composite delamination // Engineering Fracture Mechanics. – 2008. – Vol. 75. – P. 4774–4792. – DOI: 10.1016/j.engfracmech.2008.06.004.
  11. Fracture Analysis of a Special Cracked Lap Shear (CLS) Specimen with Utilization of Virtual Crack Closure Technique (VCCT) by Finite Element Methods / M. Azimi, S. S. Mirjavadi, S. A. Asli, A. M. S. Hamouda // Journal of Failure Analysis and Prevention. – 2017. – Vol. 17, iss. 2. – P. 304–314. – DOI: 10.1007/s11668-017-0243-1.
  12. Numerical and experimental validation of computational models for mode I composite fracture failure / J. Bonhomme, A. Argüelles, J. Viña, I. Viña // Computational Materials Science. – 2009. – Vol. 45. – P. 993–998. – DOI: 10.1016/j.commatsci.2009.01.005.
  13. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method / M. M. Shokrieh, H. Rajabpour-Shirazi, M. Heidari-Rarani, M. Haghpanahi // Computational Materials Science. – 2012. – Vol. 65. – P. 66–73. – DOI: 10.1016/j.commatsci.2012.06.025.
  14. Computationally optimized formulation for the simulation of composite materials and delamination failures / X. Martinez, F. Rastellini, S. Oller, F. Floresa, E. Oñate // Composites Part B: Engineering. – 2011. – Vol. 42, iss. 2. – P. 134–144. – DOI: 10.1016/j.compositesb.2010.09.013.
  15. Simulation of fatigue delamination growth in composite laminates under mode I loading / Yu. V. Skvortsov, S. A. Chernyakin, S. V. Glushkov, S. N. Perov // Applied Mathematical Modelling. – 2016. – Vol. 40. – P. 7216–7224. – DOI: 10.1016/j.apm.2016.03.019.
  16. Amiri-Rad A., Mashayekhi M., Van der Meer F. P. Cohesive zone and level set method for simulation of high cycle fatigue delamination in composite materials // Composite Structures. – 2017. – Vol. 160. – P. 61–69. – DOI: 10.1016/j.compstruct.2016.10.041.
  17. May M., Hallett S. R. An advanced model for initiation and propagation of damage under fatigue loading – part I: Model formulation // Composite Structures. – 2011. – Vol. 93. – P. 2340–2349. – DOI: 10.1016/j.compstruct.2011.03.022.
  18. Smirnov S. V., Myasnikova M. V., Igumnov A. S. Determination of the local shear strength of a layered metal composite material with a ductile interlayer after thermocycling // Diagnostics, Resource and Mechanics of materials and structures. – 2016. – Iss. 4. – P. 46–56. – DOI: 10.17804/2410-9908.2016.4.046-056.
  19. Качанов Л. М. Основы механики разрушения. – М. : Наука, 1974. – 312 c.

PDF      

Библиографическая ссылка на статью

Kryuchkov D. I., Zalazinskiy A. G. Model Representation of An Axisymmetric Steel-Aluminum Sample for Simulation of a Separation Test // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 1. - P. 26-37. -
DOI: 10.17804/2410-9908.2021.1.026-037. -
URL: http://dream-journal.org/issues/content/article_311.html
(accessed: 30.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru