A. V. Stolbovsky, V. V. Popov, R. M. Falakhutdinov, S. A. Murzinova, E. V. Shorokhov, Z. I. Zavyalov, A. A. Degtyarev
EVOLUTION OF THE STRUCTURE OF TIN BRONZE AND COPPER AFTER DYNAMIC COMPRESSION BY THE KOLSKY METHOD USING A SPLIT HOPKINSON PRESSURE BAR
DOI: 10.17804/2410-9908.2019.3.041-051 The effect of high-speed dynamic compression on the structure and mechanical properties of low-alloyed tin bronze in different initial states (coarse-grained, with additional annealing, and cast, obtained by spun casting) and commercially pure copper of the M1 standard is investigated. The results obtained show that the dynamic compression of tin bronze samples in the coarse-grained initial state causes intensive twinning starting from a strain rate of 2.6·103·s-1. At relatively low deformation rates, the dynamic compression of samples in the initial cast state promotes an increase in their strength characteristics, whereas, with a further strain rate increase, the development of relaxation processes is observed. However, additional homogenization annealing decreases the probability of relaxation processes under loading, which results in the highest possible mechanical characteristics. The studies of the M1 commercially pure copper have shown that variations in the deformation rate much less affect the properties than in case of bronze, and their values are lower due to relaxation processes both under loading and after deformation.
Acknowledgements: The work was performed within the framework of the state assignment from the Russian Ministry of Education and Science (theme Function, state registration number AAAA-A19-119012990095-0) and supported by the UB RAS Basic Research Program (project No. 18-10-2-37). Keywords: plastic deformation, high-speed deformation, grain boundaries, thermal stability, dynamic compression, Kolsky method, split Hopkinson pressure bar, tin bronze, copper Bibliography:
1. Stolbovsky A.V., Popov V.V., Popova E.N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 118–132. DOI: 10.17804/2410-9908.2015.5.118-132. Available at: http://dream-journal.org/issues/2015-5/2015-5_52.html (accessed: 30.10.2017).
2. Stolbovsky A.V., Popov V.V., Popova E.N., Falahutdinov R.M. Effect of Severe Plastic Deformation by High-Pressure Torsion on the Structure and Properties of Copper and Tin Bronze. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 5, pp. 13–22. DOI: 10.17804/2410-9908.2017.5.013-022. Available at: http://dream-journal.org/issues/2017-5/2017-5_144.html (accessed: 09.07.2018).
3. Khomskaya I.V., Zel’dovich V.I., Shorokhov E.V., Frolova N.Yu., Zhgilev I. N., Kheifets A.E. Structure Formation in Copper during Dynamic Channel_Angular Pressing. Phys. Met. Metallogr., 2008, vol. 105, no. 6, pp. 586–593. DOI: 10.1134/S0031918X08060094.
4. Shorokhov E.V., Zhgilev I.N., Khomskaya I.V., Brodova I.G., Zel’dovich V.I., Gunderov D.V., Frolova N.Yu., Gurov A.A., Oglezneva N.P., Shirinkina I.G., Kheifets A.E., Astaf’ev V.V. High Speed Deformation of Metallic Materials Using Channel Angular Pressing for Producing an Ultrafine Grained Structure. Russ. Metall. (Metally), 2010, no. 4, pp. 323–327. DOI: 10.1134/S0036029510040142.
5. Khomskaya I.V., Zel’dovich V.I., Kheifets A.E., Frolova N.Yu., Dyakina V.P., Kazantsev V.A. Evolution of the Structure upon Heating of Submicrocrystalline and Nanocrystalline Copper Produced by High Rate Deformation. Phys. Met. Metallogr., 2011, vol. 111, no. 4, pp. 367–374. DOI: 10.1134/S0031918X11030070.
6. Stolbovsky A.V., Popov V.V., Popova E.N., Falahutdinov R.M., Shorohov E.V. Specific features of strain behavior of bronzes under dynamic channel-angular pressing. International Journal of Applied and Fundamental Research, 2016, no. 11–5, pp. 858–863. (In Russian).
7. Petrova A.N., Brodova I.G., Razorenov S.V. Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression. Phys. Met. Metallogr., 2017, vol. 118, no. 6, pp. 601–607. DOI: 10.1134/S0031918X17060072.
8. Garkushin G.V., Ivanchikhina G.E., Razorenov S.V., Ignatova O.N., Kaganova I.I., Malyshev A.N., Podurets A.M., Rayevskii V.A., Skokov V.I., Tyupanova O.A. Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading duration. Phys. Met. Metallogr., 2011, vol. 111, no. 2, pp. 197–206. DOI: 10.1134/S0031918X11010170.
9. Kolsky H. An investigation of the mechanical properties of material at very high rates of loading. In: Proc. Phys. Soc., London, 1949, vol. 62B, pp. 676–700.
10. Gаllаghеr Р.С.J. The inf1uence of the alloying, temperature and related effects on the stacking fault energy. Met. Trans., 1970, vol. 1, no. 9, pp. 2429–2461.
11. Liu D., Мillеr А., Аust К.Т. Annealing twin formation in a cast and annealed Cu-4 at-percent Sn alloy. Canad. Met. Quart., 1984, vol. 23, no. 2, pр. 237–240.
12. Rodionova L.A., Popova E.N., Sudareva S.V., Vorob’eva A.E., Dergunova E.A., and Shikov A.K. Structure and mechanical properties of alloyed bronze matrix in Nb3Sn-based superconducting composites. Phys. Met. Metallogr., 1992, no. 73, pp. 71–77.
13. Popova E.N., Rodionova L.A., Sudareva S.V., Romanov E.P., Khlevova N.E., and Chukin A.M. Influence of different deformation techniques on the structure of bronze matrix in multifilamentary Nb3Sn composites. Phys. Met. Metallogr., 1993, no. 76, pp. 228–234.
14. Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. Structure and thermal stability of Cu after severe plastic deformation. Defect and Diffusion Forum, 2010, vols. 297–301, pр. 1312–1321. DOI: 10.4028/www.scientific.net/DDF.297-301.1312.
А. В. Столбовский, В. В. Попов, Р. М. Фалахутдинов, С. А. Мурзинова, Е. В. Шорохов, З. И. Завьялов, А. А. Дегтярев
ЭВОЛЮЦИЯ СТРУКТУРЫ ОЛОВЯНИСТОЙ БРОНЗЫ И МЕДИ ПОСЛЕ ДИНАМИЧЕСКОГО СЖАТИЯ ПО МЕТОДУ КОЛЬСКОГО С ИСПОЛЬЗОВАНИЕМ РАЗРЕЗНОГО СТЕРЖНЯ ГОПКИНСОНА
Исследовано влияние высокоскоростного динамического сжатия на структуру и механические свойства низколегированной оловянистой бронзы в различном исходном состоянии (крупнокристаллическое, с дополнительным отжигом, и литое, полученное посредством центробежного литья) и меди технической чистоты стандарта М1. Полученные результаты показывают, что динамическое сжатие образцов оловянистой бронзы в крупнокристаллическом исходном состоянии приводит, начиная со скорости деформирования 2,6·103·c–1, к интенсивному развитию двойникования. В то же время при относительно небольших скоростях деформации динамическое сжатие образцов в исходном литом состоянии способствует повышению прочностных характеристик, а при дальнейшем повышении скорости деформации – к развитию релаксационных процессов. Однако дополнительный гомогенизирующий отжиг снижает вероятность протекания релаксационных процессов при нагружении, чем способствует получению максимально возможных механических характеристик. Испытания технически чистой меди М1 показали, что изменение скорости деформации значительно слабее влияет на свойства, чем в случае бронзы, и их значения ниже вследствие протекания релаксационных процессов как во время нагружения, так и после деформирования.
Благодарности: Работа выполнена в рамках государственного задания МИНОБРНАУКИ России (тема «Функция», номер госрегистрации № АААА-A19-119012990095-0) при поддержке программы фундаментальных исследований УрО РАН (проект № 18-10-2-37). Ключевые слова: пластическая деформация, высокоскоростное деформирование, границы зерен, термическая стабильность, динамическое сжатие, метод Кольского, разрезной стержень Гопкинсона, оловянистая бронза, медь Библиография:
1. Stolbovsky A. V., Popov V. V., Popova E. N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 118–132. – DOI: 10.17804/2410-9908.2015.5.118-132. – URL: http://dream-journal.org/issues/2015-5/2015-5_52.html (accessed: 30.10.2017).
2. Effect of Severe Plastic Deformation by High-Pressure Torsion on the Structure and Properties of Copper and Tin Bronze / A. V. Stolbovsky, V. V. Popov, E. N. Popova, R. M. Falahutdinov // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 5. – P. 13–22. – DOI: 10.17804/2410-9908.2017.5.013-022. – URL: http://dream-journal.org/issues/2017-5/2017-5_144.html (accessed: 09.07.2018).
3. Structure Formation in Copper during Dynamic Channel_Angular Pressing / I. V. Khomskaya, V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets // Phys. Met. Metallogr. – 2008. – Vol. 105, no. 6. – P. 586–593. – DOI: 10.1134/S0031918X08060094.
4. High Speed Deformation of Metallic Materials Using Channel Angular Pressing for Producing an Ultrafine Grained Structure / E. V. Shorokhov, I. N. Zhgilev, I. V. Khomskaya, I. G. Brodova, V. I. Gurov, N. P. Oglezneva, I. G. Shirinkina, A. E. Kheifets, V. V. Astaf’ev // Russ. Metall. (Metally). – 2010. – No. 4. – P. 323–327. – DOI: 10.1134/S0036029510040142.
5. Zel’dovich, D. V. Gunderov, N. Yu. Frolova, A. A. Evolution of the Structure upon Heating of Submicrocrystalline and Nanocrystalline Copper Produced by High Rate Deformation / I. V. Khomskaya, V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, V. P. Dyakina, V. A. Kazantsev // Phys. Met. Metallogr. – 2011. – Vol. 111, no. 4. – P. 367–374. – DOI: 10.1134/S0031918X11030070.
6. Особенности деформационного поведения бронз при динамическом канально-угловом прессовании / А. В. Столбовский, В. В. Попов, Е. Н. Попова, Р. М. Фалахутдинов, Е. В. Шорохов // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 11. – C. 858–863.
7. Petrova A. N., Brodova I. G., Razorenov S. V. Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression // Phys. Met. Metallogr. – 2017. – Vol. 118, no. 6. – P. 601–607. – DOI: https://doi.org/10.1134/S0031918X17060072.
8. Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading duration / G. V. Garkushin, G. E. Ivanchikhina, S. V. Razorenov, O. N. Ignatova, I. I. Kaganova, A. N. Malyshev, A. M. Podurets, V. A. Rayevskii, V. I. Skokov, O. A. Tyupanova // Phys. Met. Metallogr. – 2011. – Vol. 111, no. 2. – P. 197–206. – DOI: 10.1134/S0031918X11010170.
9. Kolsky H. An investigation of the mechanical properties of material at very high rates of loading // Proc. Phys. Soc., London. – 1949. – Vol. 62B. – Р. 676–700.
10.Gаllаghеr Р. С. J. The inf1uence of the alloying, temperature and related effects on the stacking fault energy // Met. Trans. – 1970. – Vol. 1, no. 9. – Р. 2429–2461.
11. Liu D., Мillеr А., Аust К. Т. Annealing twin formation in a cast and annealed Cu-4 at-percent Sn alloy // Canad. Met. Quart. – 1984. – Vol. 23, no. 2. – Р. 237–240.
12. Structure and mechanical properties of alloyed bronze matrix in Nb3Sn-based superconducting composites / L. A. Rodionova, E. N. Popova, S. V. Sudareva, A. E. Vorob’eva, E. A. Dergunova, and A. K. Shikov // Phys. Met. Metallogr. – 1992. – No. 73. –P. 71–77.
13. Influence of different deformation techniques on the structure of bronze matrix in multifilamentary Nb3Sn composites / E. N. Popova, L. A. Rodionova, S. V. Sudareva, E. P. Romanov, N. E. Khlevova, and A. M. Chukin // Phys. Met. Metallogr. – 1993. – No. 76. – P. 228–234.
14. Structure and thermal stability of Cu after severe plastic deformation / V. V. Popov, A. V. Stolbovsky, E. N. Popova, V. P. Pilyugin // Defect and Diffusion Forum. – 2010. – Vol. 297–301. – P. 1312–1321. – DOI: 10.4028/www.scientific.net/DDF.297-301.1312.
Библиографическая ссылка на статью
Evolution of the Structure of Tin Bronze and Copper after Dynamic Compression by the Kolsky Method Using a Split Hopkinson Pressure Bar / A. V. Stolbovsky, V. V. Popov, R. M. Falakhutdinov, S. A. Murzinova, E. V. Shorokhov, Z. I. Zavyalov, A. A. Degtyarev // Diagnostics, Resource and Mechanics of materials and structures. -
2019. - Iss. 3. - P. 41-51. - DOI: 10.17804/2410-9908.2019.3.041-051. -
URL: http://dream-journal.org/issues/content/article_254.html (accessed: 08.09.2024).
|