Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

E. I. Kuznetsova, M. V. Degtyarev, T. P. Krinitsina, Yu. V. Blinova

THE STRUCTURE OF MgB2 CERAMICS SYNTHESIZED UNDER QUASI-HYDROSTATIC PRESSING

DOI: 10.17804/2410-9908.2018.6.203-213

The paper deals with the issues of compaction and the formation of the structure of the MgB2 compound obtained under the conditions of all-around compression in a Toroid chamber (quasi-hydrostatic pressing), due to which the product has almost the same density throughout the volume. It is shown that the densest finely dispersed ceramics with a grain size of ~100 nm can be obtained from the synthesized MgB2 compound by quasi-hydrostatic pressing (P = 4–5 GPa) at room temperature followed by reductive annealing. Deformation and annealing combined made it possible to obtain ceramics with a density of 2.4 g/cm3 and a critical current density of 6.7×104 A/cm2 (at 30 K).

Acknowledgement: The research was performed on the equipment of the Testing Center of Nanotechnology and Advanced Materials collective use center of IPM UB RAS. We are grateful to A. V. Pasheev for deforming the samples. The work was performed within the state assignment on the subject of Pressure (No. AAAA-A18-118020190104-3) and supported by UB RAS project No. 18-10-2-24.

Keywords: MgB2 ceramics, quasi-hydrostatic pressure, Toroid chamber

References:

  1. Takano Y., Takeya H., Fujii H., Kumakura H., Hatano T., Togano K., Kito H., Ihara H. Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering. Appl. Phys. Lett., 2001, vol. 78, no. 19, pp. 2914–2916. DOI: 10.1063/1.1371239.
  2. Jung C.U., Park M.S., Kang W.N., Kim M.S., Kim K.H., Lee S.Y., Lee S.I. Effect of sintering temperature under high pressure on the superconductivity of MgB2. Appl. Phys. Lett., 2001, vol. 78, no. 26, pp. 4157. DOI: 10.1063/1.1382632.
  3. Yu R.C., Li S.C., Wang Y.Q., Kong X., Zhu J.L., Li F.Y., Liu Z.X., Duan X.F., Zhang Z., Jin C.Q. EELS studies of MgB2 superconductor obtained under high pressure. Physica C, 2001, vol. 363, no. 3, pp. 184–188.
  4. Jin S.Q., Li S.C., Zhu J.L., Li F.Y., Liu Z.Y., Yu R.S. High Critical Current Density of MgB2 Bulk Superconductor High-pressure Synthesized Directly from the Elements. J. of Materials Research, 2002, vol. 17, no. 3, pp. 525–527.
  5. Kuznetsova E.I., Krinitsina T.P., Sudareva S.V., Blinova Yu.V., Degtyarev M.V., Akshentsev Yu.N. Mechanisms of Cold Deformation under High Pressure of Superconductive MgB2 Ceramics. Physics of Metals and Metallography, 2018, vol. 119, no. 8, pp. 802–809. DOI: 10.1134/S0031918X18080070.
  6. Degtyarev M.V., Pilyugin V.P., Akshentsev Y.N., Kuznetsova E.I., Krinitsina T.P., Blinova Y.V., Sudareva S.V., Romanov E.P. Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor. Physics of Metals and Metallography, 2016, vol. 117, no. 8, pp. 772–782. DOI: 10.1134/S0031918X16080032.
  7. Liao X.Z., Serquis A., Zhu Y.T., Huang J.Y., Civale L., Peterson D.E., Mueller F.M., Xu H.F. Mg(B; O) precipitation in MgB2. J. Appl. Phys., 2003, vol. 93, pp. 6208–6215.
  8. Wenzel T., Nickel K.G., Glaser J., Meyer H.J., Eyidi D., Eibl O. Electron probe microanalysis of Mg–B compounds: stoichiometry and heterogeneity of superconductors. Phys. Stat. Sol. (a), 2003, vol. 198, pp. 374–386. DOI 10.1002/pssa.200306625.
  9. Eyidi D., Eibl O., Wenzel T., Nickel K.G., Schlachter S.I., Goldacker W. Superconducting properties, microstructure and chemical composition of MgB2 sheathed materials. Supercond. Sci. Technol., 2003, vol. 16, pp. 778–788.
  10. Kuznetsova E.I., Krinitsina T.P., Degtyarev M.V., Blinova Yu.V. Strucrure of magnesium diboride after cold deformation and low-temperature recovery anneal. Physics of Metals and Metallography, 2018, vol. 119, no. 12. (In print).
             

Е. И. Кузнецова, М. В. Дегтярев, Т. П. Криницина, Ю. В. Блинова

СТРУКТУРА КЕРАМИКИ СОЕДИНЕНИЯ MgB2, ПОЛУЧЕННОЙ В УСЛОВИЯХ КВАЗИГИДРОСТАТИЧЕСКОГО ПРЕССОВАНИЯ

В статье рассмотрены вопросы уплотнения и формирования структуры соединения MgB2, полученного в условиях всестороннего обжатия в камере «Тороид» (квазигидростатическое прессование), благодаря которому, изделие имеет почти одинаковую плотность по всему объему. Показано, что наиболее плотную мелкодисперсную керамику с размером зерна ~ 100 нм можно получить квазигидростатическим прессованием (Р = 4–5 ГПа) при комнатной температуре синтезированного соединения MgB2, с последующим восстановительным отжигом. Сочетание деформационного воздействия с отжигом позволило получить керамику плотностью 2,4 g/cm3 с критической плотностью тока 6,7×104 А/см2 (при 30 К).

Благодарность: Государственное задание по теме «Давление» (№ г.р. АААА-А18-118020190104-3), проект УрО РАН № 18-10-2-24.

Ключевые слова: керамика MgB2, квазигидростатическое прессование, камера "Тороид"

Библиография:

  1. Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering / Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Togano, H. Kito, H. Ihara // Appl. Phys. Lett. – 2001. – Vol. 78, no. 19. – P. 2914–2916. – DOI: 10.1063/1.1371239.
  2. Effect of sintering temperature under high pressure on the superconductivity of MgB2 / C. U. Jung, M. S. Park, W. N. Kang, M. S. Kim, K.H. Kim, S.Y. Lee, S.I. Lee // Appl. Phys. Lett. – 2001. – Vol. 78, no. 26. – P. 4157. – DOI: 10.1063/1.1382632.
  3. EELS studies of MgB2 superconductor obtained under high pressure / R. C. Yu, S. C. Li, Y. Q. Wang, X. Kong, J. L. Zhu, F. Y. Li, Z. X. Liu, X. F. Duan, Z. Zhang, C. Q. Jin // Physica C. – 2001. – Vol. 363, no. 3. – P. 184–188.
  4. High Critical Current Density of MgB2 Bulk Superconductor High-pressure Synthesized Directly from the Elements / S. Q. Jin, S. C. Li, J. L. Zhu, F. Y. Li, Z. Y. Liu, R. S. Yu // J. of Materials Research. – 2002. – Vol. 17, no. 3. – P. 525–527.
  5. Mechanisms of Cold Deformation under High Pressure of Superconductive MgB2 Ceramics / E. I. Kuznetsova, T. P. Krinitsina, S. V. Sudareva, Yu. V. Blinova, M. V. Degtyarev, Yu. N. Akshentsev. // Physics of Metals and Metallography. – 2018. – Vol. 119, no. 8. – P. 802–809. – DOI: 10.1134/S0031918X18080070.
  6. Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor / M. V. Degtyarev, V. P. Pilyugin, Y. N. Akshentsev, E. I. Kuznetsova, T. P. Krinitsina, Y. V. Blinova, S. V. Sudareva, E. P. Romanov // Physics of Metals and Metallography. – 2016. – Vol. 117, no. 8. – P. 772–782. – DOI: 10.1134/S0031918X16080032.
  7. Mg(B; O) precipitation in MgB2 / X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, F. M. Mueller, H. F. Xu // J. Appl. Phys. – 2003. – Vol. 93. – P. 6208–6215.
  8. Electron probe microanalysis of Mg–B compounds: stoichiometry and heterogeneity of superconductors / T. Wenzel, K. G. Nickel, J. Glaser, H. J. Meyer, D. Eyidi, O. Eibl // Phys. Stat. Sol. (a). – 2003. – Vol. 198. – P. 374–386. – DOI 10.1002/pssa.200306625.
  9. Superconducting properties, microstructure and chemical composition of MgB2 sheathed materials / D. Eyidi, O. Eibl, T. Wenzel, K. G. Nickel, S. I. Schlachter, W. Goldacker // Supercond. Sci. Technol. – 2003. – Vol. 16. – P. 778–788.
  10. Strucrure of magnesium diboride after cold deformation and low-temperature recovery anneal / E. I. Kuznetsova, T. P. Krinitsina, M. V. Degtyarev, Yu. V. Blinova // Physics of Metals and Metallography. – 2018. – Vol. 119, no. 12. – In print.
             
PDF      

Библиографическая ссылка на статью

The Structure of Mgb2 Ceramics Synthesized under Quasi-Hydrostatic Pressing / E. I. Kuznetsova, M. V. Degtyarev, T. P. Krinitsina, Yu. V. Blinova // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 6. - P. 203-213. -
DOI: 10.17804/2410-9908.2018.6.203-213. -
URL: http://dream-journal.org/issues/content/article_234.html
(accessed: 10.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru