Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2024 Выпуск 5

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

L. K. Kogan, A. N. Stashkov

THE EFFECT OF THE ELECTRICAL RESISTIVITY OF CONDUCTIVE COPPER CONNECTIONS ON THE RELIABILITY OF TESTING THE SOLDERING QUALITY OF CLAMP SIDE WALLS BY THE AMPLITUDE EDDY CURRENT METHOD

DOI: 10.17804/2410-9908.2024.5.181-194

A transformer eddy-current transducer with rectangular notches in the poles of its U-shaped core is used to study the effect of a change in electrical resistivity of M1 copper within the range between 0.01724 and 0.01748 μΩ∙m according to GOST 193-79 and GOST 1173-2006 on the error in determining the soldering quality of the side walls of clamps with lead ends of current-carrying rods, which are used to connect stator windings in state-of-the-art designs of hydro- and turbogenerators. Specimens made at different times and received from different power engineering enterprises are studied. It is found that, when the relative difference of electrical resistivity varies within 1.36%, the error in evaluating the level of soldering of the side walls of clamps does not exceed 15.5%. This must be taken into account when performing eddy current testing.

Acknowledgement: The work was performed under the state assignment from the Russian Ministry of Science and Higher Education (theme Diagnostics, No 122021000030-1).

Keywords: eddy current inspection, power equipment, conductive connections, electrical resistivity, soldering, eddy current transducer with rectangular notches in the poles of a U-shaped core, double-frequency testing of soldering, reliability of testing

References:

  1. Chelly A., Glass, S., Belhassen, J., Karsenty, A. Broad review of four-point probe correction factors: enhanced analytical model using advanced numerical and experimental cross-examination. Results in Physics, 2023, 48, 106445–106454. DOI: 10.1016/j.rinp.2023.106445.
  2. Gutiérrez-Vargas, G., Ruiz, A., López-Morelos, V.H., Kim, J.-Y., González-Sánchez, J., and Medina-Flores, A. Evaluation of 475°C embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements. Nuclear Engineering and Technology, 2021, 53 (9), 2982–2989. DOI: 10.1016/j.net.2021.03.018.
  3. Huang, P., Ding, Y., Li, J., Xu, L., and Xie, Y. Conductivity estimation of non-magnetic materials using eddy current method Nondestructive Testing and Evaluation, 2022, 38 (1), 130–146. DOI: 10.1080/10589759.2022.2077939.
  4. Ye, C., Su, Z., Rosell, A., Udpa, L., Udpa, S., Capobianco, T., and Tamburrino, A. A decay time approach for linear measurement of electrical conductivity. NDT & E International, 2019, 102, 169–174. DOI: 10.1016/j.ndteint.2018.12.001.
  5. Mirzaei, M, Ripka, P, and Grim, V. Conductivity measurement of nonferrous plates using a novel sensor with triangular arrangements of triple coils. In: 2022 Joint MMM Intermag Conference (INTERMAG), New Orleans, LA, USA, 2022, pp. 1–5. DOI: 10.1109/INTERMAG39746.2022.9827796.
  6. Gao, P., Wang, C., Li, Y., and Cong, Z. Electromagnetic and eddy current NDT in weld inspection: a review. Insight, 2015, 57 (6), 337–345. DOI: 10.1784/insi.2015.57.6.337.
  7. Tesfalem, H., Peyton, A., Fletcher, A., Brown, M., and Chapman, B. Eddy current sensor and inversion technique for estimation of the electrical conductivity profile of the graphite bricks in an advanced gas-cooled reactor core. In: Electromagnetic Nondestructive Evaluation (XX), Studies in Applied Electromagnetics and Mechanics Series, 2017, 42, 253–264. DOI: 10.3233/978-1-61499-767-2-253. Available at: https://ebooks.iospress.nl/publication/46626
  8. Ma, X., Peyton, A.J., and Zhao, Y.Y. Eddy current measurements of electrical conductivity and magnetic permeability of porous metals. NDT & E International, 2006, 39, 562–568. DOI: 10.1016/j.ndteint.2006.03.008.
  9. Ma, X. and Peyton, A.J. Eddy current measurement of the electrical conductivity and porosity of metal foams. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (2), 570–576. DOI: 10.1109/TIM.2006.873549.
  10. Huang, Z., Zhu, J., Wu, X., Qiu, R., Xu, Z., and Ruan, J. Eddy current separation can be used in separation of non-ferrous particles from crushed waste printed circuit boards Journal of Cleaner Production, 2021, 312, 127755–127762. DOI: 10.1016/j.jclepro.2021.127755.
  11. Kriezis, E.E., Tsiboukis, T.D., Panas, S.M., and Tegopoulos, J.A. Eddy currents: theory and applications. In: Proceedings of the IEEE, 1992, 80 (10), pp. 1559–1589. DOI: 10.1109/5.168666.
  12. Ramos, H.G., Ribeiro, A.L., Jezdik, P., and Neskudla, J. Eddy current testing of conductive materials. In: IEEE Instrumentation and Measurement Technology Conference, 2008, pp. 964–968. DOI: 10.1109/IMTC.2008.4547176.
  13. De Halleux, B., De Limburg Stirum, B., and Ptchelintsev, A. Eddy current measurement of the wall thickness and conductivity of circular non-magnetic conductive tubes. NDT & E International, 1996, 29, 103–109. DOI: 10.1016/0963-8695(96)00001-1.
  14. Nerazrushayuschiy control: spravochnik [Nondestructive Testing: A Handbook in 7 vols., ed., V.V. Klyuev, Vol. 2, Book 2: Eddy Current Testing]. Mashinostroenie Publ., Moscow, 2003, 688 p. (In Russian).
  15. Terekhin, I.V. and Slavinskaya, E.A. Evaluating specific electrical conductivity of two-layered nonmagnetic objects by pulsed eddy-current method. Russian Journal of Nondestructive Testing, 2019, 55, 286–292. DOI: 10.1134/S1061830919040120.
  16. Sophian, A., Tian, G., and Fan, M. Pulsed eddy current non-destructive testing and evaluation: a review. Chinese Journal of Mechanical Engineering, 2017, 30, 500–514. DOI: 10.1007/s10033-017-0122-4.
  17. Maierhofer, C., Röllig, M., Steinfurth, H., Ziegler, M., Kreutzbruck, M., Scheuerlein, C., and Heck, S. Non-destructive testing of Cu solder connections using active thermography. NDT & E International, 2012, 52, 103–111. DOI: 10.1016/j.ndteint.2012.07.010.
  18. Principe, R., Vallejo, L.M., Bailey, J., Berthet, R., Favier, L., Grand-Clement, L., and Savary, F. Phased Array Ultrasonic nondestructive tests of soldered current-carrying bus-bar splices of superconducting magnets. IEEE Transactions on Applied Superconductivity, 2018, 28 (4), 1–8. DOI: 10.1109/TASC.2018.2800735.
  19. Malyy, V.V., Kostyukhin, A.S., and Kinzhagulov, I.Yu. Development of technology for non-destructive quality control of heat exchanger brazed joints and determination of the principles of its automation. Tekhhniko-Tekhnologicheskie Problemy Servisa, 2022, 3 (61), 11–17. (In Russian).
  20. Dorofeev, A.L. Elektro-induktivnaya defektoskopiya [Electro-Inductive Flaw Detection]. Mashinostroenie Publ., Moscow, 1967, 231 p. (In Russian).
  21. Kogan, L., Nichipuruk, A., Savary, F., Pricipe, R., Datskov, V., Rozenfeld, E., and Khudjakov, B. Eddy current of soldered current-carrying bas-bar splices of superconducting magnets. Insight, 2015, 57 (12), 697–702. DOI: 10.1784/insi.2015.57.12.697.
  22. Rozenfeld, E.V., Nichipuruk, A.P., Kogan, L.K., and Khudyakov, B.A. Eddy-current quality control of soldering of current-carrying joints in electrical machines. I. General principles. Russian Journal of Nondestructive Testing, 2010, 46, 281–291. DOI: 10.1134/S1061830910040066.
  23. Kogan, L.K., Nichipuruk, A.P., Rozenfeld, E.V., and Khudyakov, B.A. Eddy-current quality control of soldering of current-carrying joints in electrical machines. II. Experiment. Russian Journal of Nondestructive Testing, 2010, 46, 292–301. DOI: 10.1134/S1061830910040078.
  24. Kogan, L.K., Stashkov, A.N., and Nichipuruk, A.P. Improving the reliability of eddy-current quality control of soldering in current-carrying copper joints and expanding the nomenclature of inspected joints in energy equipment. Russian Journal of Nondestructive Testing, 2018, 54, 784–791. DOI: 10.1134/S1061830918110049.
  25. Syasko, V.A., Roytgarc, M.B., Koroteev, M.Yu., and Solomenchuk, P.V. Quality control of soldered joints of stator windings of turbogenerators at the Electrosila plant. V Mire NK, 2010, 2 (48), 1–9. (In Russian).
  26. Potapov, A.I., Syasko, V.A., Koroteev, M.Y., Solomenchuk, P.V. A finite-element modeling of a probe of eddy-current quality testing of soldered joints in turbogenerator windings. Russian Journal of Nondestructive Testing, 2014, 50, 264–273. DOI: 10.1134/S1061830914050064.
  27. Kogan, L.K., Stashkov, A.N., and Nichipuruk, A.P. Quality control of soldering of side walls of clamps in current-carrying connections of electric machines taking into account the influence of their sizes. Russian Journal of Nondestructive Testing, 2022, 58, 1142–1152. DOI: 10.1134/S1061830922700140.

Л. Х. Коган, А. Н. Сташков

ВЛИЯНИЕ УДЕЛЬНОГО ЭЛЕКТРОСОПРОТИВЛЕНИЯ ТОКОВЕДУЩИХ МЕДНЫХ СОЕДИНЕНИЙ НА ДОСТОВЕРНОСТЬ КОНТРОЛЯ КАЧЕСТВА ПАЙКИ БОКОВЫХ СТЕНОК ХОМУТОВ АМПЛИТУДНЫМ ВИХРЕТОКОВЫМ МЕТОДОМ

С использованием трансформаторного вихретокового преобразователя с прямоугольными вырезами в полюсах его П-образного сердечника исследовано влияние изменения удельного электросопротивления меди марки М1 в пределах от 0,01724 до 0,01748 мкОм∙м согласно ГОСТ 193-79 и ГОСТ 1173-2006 на погрешность определения пропаянности боковых стенок хомутов с выводными концами токоведущих стержней, которые применяются для соединения обмоток статоров в современных конструкциях гидро- и турбогенераторов. Исследования проведены на образцах, изготовленных в разное время и полученных с различных предприятий энергомашиностроения. Установлено, что при изменении относительной разности удельного электросопротивления в пределах 1,36 % погрешность определения уровня пропаянности боковых стенок хомутов не превышает 15,5 %, что необходимо учитывать при проведении вихретокового контроля.

Благодарность: Работа выполнена в рамках государственного задания Минобрнауки России (тема «Диагностика», № 122021000030-1).

Ключевые слова: вихретоковый контроль, энергетическое оборудование, токоведущие соединения, удельное электросопротивление, пайка, вихретоковый преобразователь с прямоугольными вырезами в полюсах П-образного сердечника, двухчастотный контроль пайки, достоверность контроля

Библиография:

  1. Broad review of four-point probe correction factors: enhanced analytical model using advanced numerical and experimental cross-examination / A. Chelly, S. Glass, J. Belhassen, A. Karsenty // Results in Physics. – 2023. – Vol. 48. – P. 106445–106454. – DOI: 10.1016/j.rinp.2023.106445.
  2. Evaluation of 475°C embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements / G. Gutiérrez-Vargas, A Ruiz., V. H. López-Morelos, J.-Y. Kim, J. González-Sánchez, A. Medina-Flores // Nuclear Engineering Technology. – 2021. – Vol. 53 (9). – P. 2982–2989. – DOI: 10.1016/j.net.2021.03.018.
  3. Conductivity estimation of non-magnetic materials using eddy current method / P. Huang, Y. Ding, J. Li, L. Xu, Y. Xie // Nondestructive Testing and Evaluation. – 2022. – Vol. 38 (1). – P. 130–146. – DOI: 10.1080/10589759.2022.2077939.
  4. A decay time approach for linear measurement of electrical conductivity / C. Ye, Z. Su, A. Rosell, L. Udpa, S. Udpa, T. Capobianco, A. Tamburrino // NDT & E International. – 2019. – Vol. 102. – P. 169–174. – DOI: 10.1016/j.ndteint.2018.12.001.
  5. Mirzaei M., Ripka P., Grim V. Conductivity measurement of nonferrous plates using a novel sensor with triangular arrangements of triple coils // 2022 Joint MMM Intermag Conference (INTERMAG), New Orleans, LA, USA, 2022. – P. 1–5. – DOI: 10.1109/INTERMAG39746.2022.9827796.
  6. Electromagnetic and eddy current NDT in weld inspection: a review / P. Gao, C. Wang, Y. Li, Z. Cong // Insight. – 2015. – Vol. 57 (6). – P. 337–345. – DOI: 10.1784/insi.2015.57.6.337.
  7. Eddy current sensor and inversion technique for estimation of the electrical conductivity profile of the graphite bricks in an advanced gas-cooled reactor core / H. Tesfalem, A. Peyton, A. Fletcher, M. Brown, B. Chapman // Electromagnetic Nondestructive Evaluation (XX). Studies in Applied Electromagnetics and Mechanics Series. – 2017. – Vol. 42. – P. 253–264. – DOI: 10.3233/978-1-61499-767-2-253. – Available at: https://ebooks.iospress.nl/publication/46626
  8. Ma X., Peyton A. J., Zhao Y. Y. Eddy current measurements of electrical conductivity and magnetic permeability of porous metals // NDT & E International. – 2006. – Vol. 39. – P. 562–568. – DOI: 10.1016/j.ndteint.2006.03.008.
  9. Ma X., Peyton A. J. Eddy current measurement of the electrical conductivity and porosity of metal foams // IEEE Transactions on Instrumentation and Measurement. – 2006. – Vol. 55 (2). – P. 570–576. – DOI: 10.1109/TIM.2006.873549.
  10. Eddy current separation can be used in separation of non-ferrous particles from crushed waste printed circuit boards / Z. Huang, J. Zhu, X. Wu, R. Qiu, Z. Xu, J. Ruan // Journal of Cleaner Production. – 2021. – Vol. 312. – P. 127755–127762. – DOI: 10.1016/j.jclepro.2021.127755.
  11. Eddy currents: theory and applications / E. E. Kriezis, T. D. Tsiboukis, S. M. Panas, J. A. Tegopoulos // Proceedings of the IEEE. – 1992. – Vol. 80 (10). – P. 1559–1589. – DOI: 10.1109/5.168666.
  12. Eddy current testing of conductive materials / H. G. Ramos, A. L. Ribeiro, P. Jezdik, J. Neskudla // IEEE Instrumentation and Measurement Technology Conference. – 2008. – P. 964–968. – DOI: 10.1109/IMTC.2008.4547176.
  13. De Halleux B., De Limburg Stirum B., Ptchelintsev A. Eddy current measurement of the wall thickness and conductivity of circular non-magnetic conductive tubes // NDT & E International. – 1996. – Vol. 29. – P. 103–109. – DOI: 10.1016/0963-8695(96)00001-1.
  14. Неразрушающий контроль : справочник : в 7 т. / под общ. ред. В. В. Клюева. – Т. 2, кн. 2 : Вихретоковый контроль. – М. : Машиностроение, 2003. – 688 с.
  15. Terekhin I. V., Slavinskaya E. A. Evaluating specific electrical conductivity of two-layered nonmagnetic objects by pulsed eddy-current method // Russian Journal of Nondestructive Testing. – 2019. – Vol. 55. – P. 286–292. – DOI: 10.1134/S1061830919040120.
  16. Sophian A., Tian G., Fan M. Pulsed eddy current non-destructive testing and evaluation: a review // Chinese Journal of Mechanical Engineering. – 2017. – Vol. 30. – P. 500–514. –DOI: 10.1007/s10033-017-0122-4.
  17. Non-destructive testing of Cu solder connections using active thermography / C. Maierhofer, M. Röllig, H. Steinfurth, M. Ziegler, M. Kreutzbruck, C. Scheuerlein, S. Heck // NDT & E International. – 2012. – Vol. 52. – P. 103–111. – DOI: 10.1016/j.ndteint.2012.07.010.
  18. Phased Array Ultrasonic nondestructive tests of soldered current-carrying bus-bar splices of superconducting magnets / R. Principe, L. M. Vallejo, J. Bailey, R. Berthet, L. Favier, L. Grand-Clement, F Savary // IEEE Transactions on Applied Superconductivity. – 2018. – Vol. 28 (4). – P. 1–8. – DOI: 10.1109/TASC.2018.2800735.
  19. Малый В. В., Костюхин А. С., Кинжагулов И. Ю. Разработка технологии неразрушающего контроля качества паяных соединений теплообменных аппаратов и определение принципов её автоматизации // Технико-технологические проблемы сервиса. – 2022. – № 3 (61). – С. 11–17.
  20. Дорофеев А. Л. Электро-индуктивная дефектоскопия. – М. : Машиностроение. – 1967. – 231 с.
  21. Eddy current of soldered current-carrying bas-bar splices of superconducting magnets / L. Kogan, A. Nichipuruk, F. Savary, R. Pricipe, V., Datskov E. Rozenfeld, B. Khudjakov // Insight. – 2015. – Vol. 57 (12). – P. 697–702. – DOI: 10.1784/insi.2015.57.12.697.
  22. Eddy-current quality control of soldering of current-carrying joints in electrical machines. I. General principles / E. V. Rozenfeld, A. P. Nichipuruk, L. K. Kogan, B. A. Khudyakov // Russian Journal of Nondestructive Testing. – 2010. – Vol. 46. – P. 281–291. – DOI: 10.1134/S1061830910040066.
  23. Eddy-current quality control of soldering of current-carrying joints in electrical machines. II. Experiment / L. K. Kogan, A. P. Nichipuruk, E. V. Rozenfeld, B. A. Khudyakov // Russian Journal of Nondestructive Testing. – 2010. – Vol. 46 – P. 292–301. – DOI: 10.1134/S1061830910040078.
  24. Kogan L. K., Stashkov A. N., Nichipuruk A. P. Improving the reliability of eddy-current quality control of soldering in current-carrying copper joints and expanding the nomenclature of inspected joints in energy equipment // Russian Journal of Nondestructive Testing – 2018. – Vol. 54. – P. 784–791. – DOI: 10.1134/S1061830918110049.
  25. Контроль качества паяных соединений стержней статорных обмоток турбогенераторов на заводе «Электросила» / В. А. Сясько, М. Б. Ройтгарц, М. Ю. Коротеев, П. В. Соломенчук // В мире неразрушающего контроля. – 2010. – № 2 (48). –С. 1–9.
  26. A finite-element modeling of a probe of eddy-current quality testing of soldered joints in turbogenerator windings / A. I. Potapov, V. A. Syasko, M. Y. Koroteev, P. V. Solomenchuk // Russian Journal of Nondestructive Testing. – 2014. – Vol. 50. – P. 264–273. – DOI: 10.1134/S1061830914050064.
  27. Kogan L. K., Stashkov A. N., Nichipuruk A. P. Quality control of soldering of side walls of clamps in current-carrying connections of electric machines taking into account the influence of their sizes // Russian Journal of Nondestructive Testing. – 2022. – Vol. 58. – P. 1142–1152. – DOI: 10.1134/S1061830922700140.

PDF      

Библиографическая ссылка на статью

Kogan L. K., Stashkov A. N. The Effect of the Electrical Resistivity of Conductive Copper Connections on the Reliability of Testing the Soldering Quality of Clamp Side Walls by the Amplitude Eddy Current Method // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 5. - P. 181-194. -
DOI: 10.17804/2410-9908.2024.5.181-194. -
URL: http://dream-journal.org/issues/2024-5/2024-5_461.html
(accessed: 29.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru