K.V. Gubareva, A.V. Eremin
STUDYING THE HEAT TRANSFER PROCESS IN A POROUS MEDIUM WITH A FISCHER–KOCH S TPMS STRUCTURE
DOI: 10.17804/2410-9908.2024.4.070-082 The paper reports a study of the process of heat transfer in a porous medium with internal heat sources. A model material is considered, which is a porous plate formed by Fischer–Koch S elementary cells, with a topology of triply periodic minimal surfaces. The results of solving the boundary value problem of thermal conductivity in a thin plate under symmetric boundary conditions of the first kind are presented. The developed numerical-analytical method is used to obtain a simple solution to the problem, taking into account the topological features of the material. Computational homogenization methods based on computer-aided engineering simulation in the Ansys software are used to determine the transfer coefficients and thermophysical properties of the area under study. The paper presents graphs of temperature distribution in a porous plate at different times and compares the obtained analytical solutions with numerical ones. The results of the study can be used in designing thermal protection of heat-generating equipment, heat and mass transfer paths in thermal and mechanical equipment, etc. The solutions are presented in a simple analytical form; this enables them to be used by a wide range of researchers and engineers and does not require using expensive software and hardware.
Acknowledgement: The study was supported by a grant from the Russian Science Foundation (RSF), No. 23-79-10044, https://rscf.ru/project/23-79-10044/. The use of Ansys in Samara State Technical University was licensed under agreement ЕП127/21 dated 04 October 2021. Keywords: effective thermal conductivity, triply periodic minimum Fischer–Koch surface, additional unknown function, additional boundary characteristics, ordered macrostructure, porous material, heat transfer References:
- Murzakova, A.R., Shayakhmetov, U.Sh., Vasin, K.A., and Bakunov, V.S. Developing a technology for the production of an effective porous structural heat and sound insulator. Stroitelnye Materialy, 2011, 5, 65–67. (In Russian).
- Omarov, A.O. Substantiation of efficiency criteria of materials for rational enclosing structures and description of technology of efficient structural and heat-insulating cellular concrete on porous aggregates. Vestnik Evraziyskoy Nauki, 2021, 1, Available at: https://esj.today/PDF/10SAVN121.pdf. (In Russian).
- Prokhorchuk, Е.А., Leonov, А.А., Vlasova, К.А., Trapeznikov, А.V., Nikitin, V.I., and Nikitin, К.V. Prospects for the use of hot isostatic pressing in cast aluminum alloys (review). Trudy VIAM, 2021, 12 (106), 21–30. DOI: 10.18577/2307-6046-2021-0-12-21-30. (In Russian).
- Izzheurov, E.A. and Uglanov, D.A. Obliteration’s problems in capillary-porous structures of aerospace hydro systems’ parts. Vestnik Samarskogo universiteta. Aerokosmicheskaya Tekhnika, Tekhnologii, Mashinostroenie, 2009, 3 (19), 143–146. (In Russian).
- Alifanov, O.M., Salosina, M.O., Budnik, S.A., and Nenarokomov, A.V. Design of aerospace vehicles’ thermal protection based on heat-insulating materials with optimal structure. Aerospace, 2023, 10 (7), 629. DOI: 10.3390/aerospace10070629.
- Rydalina, N. V., Aksenov, B. G., Stepanov, O. A., and Antonova, E. O. Application of porous materials in heat exchangers of heat supply system. Izvestiya Vysshykh Uchebnykh Zavedeniy. Problemy Energetiki, 2020, 22 (3), 3–13. (In Russian). DOI: 10.30724/1998-9903-2020-22-3-3-13.
- Rydalina, N.V., Stepanov, O.A., and Antonova, E.O. Application of porous metals in the designs of heat exchangers. Vestnik Evraziyskoy Nauki, 2023, 15 (1). (In Russian). Available at: https://esj.today/PDF/24SAVN123.pdf
- Son, E.E. Damper systems for the high voltage equipment protection by porous metals. Izvestiya RAN. Energetika, 2019, 6, 78–109. (In Russian). DOI: 10.1134/S0002331019060098.
- Andrianov, I.V., Kalamkarov, A.L., and Starushenko, G.A. Analytical expressions for effective thermal conductivity of composite materials with inclusions of square cross-section. Composites. Part B: Engineering, 2013, 50, 44–53. DOI: 10.1016/j.compositesb.2013.01.023.
- Bragin, D.M., Popov, A.I., Ivannikov, Yu.N., Eremin, A.V., Zinina, S.A., and Kechin, N.N. Experimental study of effective thermal conductivity of materials based on TPMS. In: The 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), IEEE, Lipetsk, Russian Federation, 2023, pp. 983–985. DOI: 10.1109/SUMMA60232.2023.10349385.
- Prosviryakov, E.Yu. Gravitational Principle of minimum pressure for incompressible flows. Diagnostics, Resource and Mechanics of materials and structures, 2021, 2, 22–29. DOI: 10.17804/2410-9908.2021.2.022-029. Available at: http://dream-journal.org/issues/content/article_315.html
- Gorshkov, A.V. and Prosviryakov, E.Yu. Analytical study of the Ekman angle for the Benard–Marangoni convective flow of viscous incompressible fluid. Diagnostics, Resource and Mechanics of materials and structures, 2021, 4, 34–48. DOI: 10.17804/2410-9908.2021.4.34-49. Available at: http://dream-journal.org/issues/2021-4/2021-4_340.html
- Fischer, W. and Koch, E. Spanning minimal surfaces. Philosophical Transactions of the Royal Society A, 1996, 354 (1715), 2105–2142. DOI: 10.1098/rsta.1996.0094.
- Lykov, A.V. Teoriya teploprovodnosti [Theory of Thermal Conductivity]. Vysshaya Shkola Publ., Moscow, 1967, 600 p. (In Russian).
- Bragin, D.М., Eremin, А.V., Popov, A.I., and Shulga А.S. Method to determine effective thermal conductivity coefficient of porous material based on minimum surface Schoen's I-WP(R) type Vestnik IGEU, 2023, 2, 61–68. (In Russian). DOI: 10.17588/2072-2672.2023.2.061-068.
- Popov, A.I., Bragin, D.М., Zinina, S.A., Eremin, А.V., and Olatuyi O.J. Determination of the effective thermal conductivity of a porous material with an ordered structure based on I-WP TPMS. Mezhdunarodnyi Zhurnal Informatsionnykh Tekhnologiy i Energoeffektivnosti, 2022, 7, 3–1 (25), 61–67. (In Russian).
- Eremin, A.V., Gubareva, K.V, Popov, A.I. Investigation of the temperature state of fuel elements with a given spatial distribution of heat sources. AIP Conf. Proc, 2022, 2456, 020015. DOI: 10.1063/5.0074727.
- Kudinov, I.V., Kotova, E.V., and Kudinov, V.A. A method for obtaining analytical solutions to boundary value problems by defining additional boundary conditions and additional sought-for functions. Numerical Analysis and Applications, 2019, 12 (2), 126–136. DOI: 10.1134/S1995423919020034.
- Kudinov, V.A., Eremin, A.V., and Stefanyuk, E.V. Analytical solutions of heat-conduction problems with time-varying heat-transfer coefficients. Journal of Engineering Physics and Thermophysics, 2015, 88 (3), 688–698. DOI: 10.1007/s10891-015-1238-y.
- Kudinov, V.A., Kartashov, E.M., and Kalashnikov V.V. Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloynykh konstruktsyi [Analytical Solutions of Problem of Heat and Mass Transfer and Thermoelasticity for Multilayered Structures: Educational Book]. Vysshaya Shkola Publ., Moscow, 2005, 430 p. (In Russian).
К. В. Губарева, А. В. Еремин
ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПЕРЕНОСА В ПОРИСТОЙ СРЕДЕ
СО СТРУКТУРОЙ ТПМП ФИШЕРА – КОХА S
В работе выполнено исследование процесса переноса тепла в пористой среде с внутренними источниками тепла. Рассматривается модельный материал – пористая пластина с топологией трижды периодических минимальных поверхностей, образованная элементарными ячейками типа Фишера – Коха S. В статье приведены результаты решения краевой задачи теплопроводности в тонкой пластине при симметричных граничных условиях первого рода. С использованием разработанного численно-аналитического метода получено простое по форме решение задачи с учетом топологических особенностей материала. При определении коэффициентов переноса и теплофизических свойств исследуемой области использованы методы вычислительной гомогенизации среды на основе CAE-моделирования в программном комплексе Ansys. В статье приведены графики распределения температуры в пористой пластине в различные моменты времени, выполнено сравнение полученных аналитических решений с численными. Результаты работы могут быть использованы при проектировании тепловой защиты тепловыделяющего оборудования, тепломассообменных трактов тепломеханического оборудования и др. Решения представлены в простом аналитическом виде, что делает возможным их использование широким кругом исследователей, инженеров и не требует использования дорогостоящего программного обеспечения и вычислительной техники.
Благодарность: Работа выполнена за счет гранта Российского научного фонда № 23-79-10044, https://rscf.ru/project/23-79-10044/. Лицензия на использование Ansys в ФГБОУ ВО «Самарский государственный технический университет» предоставлена в рамках договора ЕП127/21 от 04.10.2021 г. Ключевые слова: эффективная теплопроводность, трижды периодическая минимальная поверхность Фишера-Коха, ТПМП, дополнительная искомая функция, дополнительные граничные характеристики, упорядоченная макроструктура, пористый материал, перенос тепла Библиография:
- Разработка технологии получения эффективного строительного пористого тепло- и звукоизоляционного конструкционного материала / А. Р. Мурзакова, У. Ш. Шаяхметов, К. А. Васин, В. С. Бакунов // Строительные материалы. – 2011. – № 5. – С. 65–67.
- Омаров А. О. Обоснование критериев эффективности материалов для рациональных ограждающих конструкций и описание технологии эффективных конструкционно-теплоизоляционных ячеистых бетонов на пористых заполнителях // Вестник Евразийской науки. – 2021. – №1. – URL: https://esj.today/PDF/10SAVN121.pdf
- Перспектива применения пеноалюминия для изделий авиакосмической техники (обзор) / Е. А. Прохорчук, А. А. Леонов, К. А. Власова, А. В. Трапезников, В. И. Никитин, К. В. Никитин // Труды ВИАМ. – 2021. – № 12 (106). – С. 21–30. – DOI: 10.18577/2307-6046-2021-0-12-21-30.
- Изжеуров Е. А., Угланов Д. А. Проблемы облитерации в капиллярно-пористых структурах изделий гидросистем аэрокосмической техники // Вестник Самарского университетаю Аэрокосмическая техника, технологии. – 2009. – № 3 (19). – С. 143–146.
- Design of aerospace vehicles’ thermal protection based on heat-insulating materials with optimal structure / O. M. Alifanov, M. O. Salosina, S. A. Budnik, A. V. Nenarokomov // Aerospace. – 2023. – Vol. 10 (7). – P. 629. – DOI: 10.3390/aerospace10070629.
- Применение пористых материалов в теплообменных аппаратах системы теплоснабжения / Н. В. Рыдалина, Б. Г. Аксенов, О. А. Степанов, Е. О. Антонова // Известия высших учебных заведений. Проблемы энергетики. – 2020. – Т. 22 (3). – С. 3–13. – DOI: 10.30724/1998-9903-2020-22-3-3-13.
- Применение пористых металлов в конструкциях теплообменных аппаратов / Н. В. Рыдалина, О. А. Степанов, Е. О. Антонова // Вестник Евразийской науки. – 2023. – Т. 15 (1). – URL: https://esj.today/PDF/24SAVN123.pdf
- Сон Э. Е. Демпферные системы защиты корпусов высоковольтного электрооборудования пористыми металлами // Известия РАН. Энергетика. – 2019. – № 6. – С. 78–109. – DOI: 10.1134/S0002331019060098.
- Andrianov I. V., Kalamkarov A. L., Starushenko G. A. Analytical expressions for effective thermal conductivity of composite materials with inclusions of square cross-section // Composites. Part B: Engineering. – 2013. – Vol. 50. – P. 44–53. – DOI: 10.1016/j.compositesb.2013.01.023.
- Experimental study of effective thermal conductivity of materials based on TPMS / D. M. Bragin, A. I. Popov, Yu. N. Ivannikov, A. V. Eremin, S. A. Zinina, N. N. Kechin // The 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russian Federation, November 8–10, 2023. – IEEE, 2023. – P. 983–985.
- Prosviryakov E. Yu. Gravitational principle of minimum pressure for incompressible flows // Diagnostics, Resource and Mechanics of materials and structures. – 2021. – Iss. 2. – P. 22–29. – DOI: 10.17804/2410-9908.2021.2.022-029. – URL: http://dream-journal.org/issues/content/article_315.html
- Gorshkov, A. V., Prosviryakov, E. Yu. Analytical study of the Ekman angle for the Benard–Marangoni convective flow of viscous incompressible fluid // Diagnostics, Resource and Mechanics of materials and structures. – 2021. – Iss. 4. – P. 34–48. – DOI: 10.17804/2410-9908.2021.4.34-49. – URL: http://dream-journal.org/issues/2021-4/2021-4_340.html
- Fischer W., Koch E. Spanning minimal surfaces // Philosophical Transactions of the Royal Society A. – 1996. – 354 (1715). – P. 2105–2142. – DOI: 10.1098/rsta.1996.0094.
- Лыков А. В. Теория теплопроводности. – М. : Высшая школа, 1967. – 600 с.
- Метод определения коэффициента эффективной теплопроводности пористого материала на основе минимальной поверхности типа Schoen’s I-WP(R) / Д. М. Брагин, А. В. Еремин, А. И. Попов, А. С. Шульга // Вестник ИГЭУ. – 2023. – № 2. – С. 61–68. – DOI: 10.17588/2072-2672.2023.2.061-068.
- Определение эффективного коэффициента теплопроводности пористого материала с упорядоченной структурой, основанной на ТПМП I-WP / А. И. Попов, Д. М. Брагин, С. А. Зинина, А. В. Еремин, О. Д. Олатуйи // Международный журнал информационных технологий и энергоэффективности. – 2022. – Т. 7, № 3–1 (25). – С. 61–67.
- Eremin A. V., Gubareva K. V, Popov A. I. Investigation of the temperature state of fuel elements with a given spatial distribution of heat sources // AIP Conf. Proc. – 2022. – 2456. – 020015. – DOI: 10.1063/5.0074727.
- Kudinov I. V., Kotova E. V., Kudinov V. A. A method for obtaining analytical solutions to boundary value problems by defining additional boundary conditions and additional sought-for functions // Numerical Analysis and Applications. – 2019. – Vol. 12 (2). – P. 126–136. – DOI: 10.1134/S1995423919020034.
- Kudinov V. A., Eremin A. V., Stefanyuk E. V. Analytical solutions of heat-conduction problems with time-varying heat-transfer coefficients // Journal of Engineering Physics and Thermophysics. – 2015. – Vol 88 (3). – P. 688–698. – DOI: 10.1007/s10891-015-1238-y.
- Кудинов В. А., Карташов Э. М., Калашников В. В. Аналитические решения задач тепломассопереноса и термоупругости для многослойных конструкций : учеб. пособие для вузов. – М. : Высшая школа, 2005. – 430 с.
Библиографическая ссылка на статью
Gubareva K.V., Eremin A.V. Studying the Heat Transfer Process in a Porous Medium with a Fischer–koch S Tpms Structure // Diagnostics, Resource and Mechanics of materials and structures. -
2024. - Iss. 4. - P. 70-82. - DOI: 10.17804/2410-9908.2024.4.070-082. -
URL: http://dream-journal.org/issues/2024-4/2024-4_449.html (accessed: 21.12.2024).
|