Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2023 Выпуск 6

Все выпуски
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

L. S. Goruleva, S. M. Zadvorkin, D. I. Vichuzhanin, R. A. Savrai, P. A. Skorynina

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THROUGH-DEPTH STRAIN DISTRIBUTION DURING FRICTIONAL TREATMENT OF A METASTABLE AUSTENITIC STEEL

DOI: 10.17804/2410-9908.2023.6.132-144

Frictional treatment, as a method of surface plastic deformation, forms a gradient hardened layer. In the case of metastable steels, this hardening is due, among other things, to the formation of strain-induced α'-martensite. The most reliable information about the thickness of this hardened layer can be obtained by measuring the hardness on transverse sections. This paper compares strain distribution through the depth of the hardened layer, obtained from layer-by-layer phase analysis and finite element modeling, with the data of durametric studies for the AISI 321 metastable steel subjected to frictional treatment under various loads on the indenter. A satisfactory coincidence of the distributions of the α'-phase concentration and hardness through the depth is observed only for the specimen subjected to frictional treatment at a maximum load of 400 N on the indenter. At the other loads on the indenter, the thickness of the layer containing α'-martensite is lower than the thickness of the hardened layer estimated from the durametric studies. In contrast, it is shown that, for all the loads applied to the indenter during frictional treatment, the through-depth distributions of the calculated values of equivalent plastic strain obtained from finite element modeling agree satisfactorily with the experimental hardness values.

Acknowledgements: he work was performed under state assignment No. AAAA-A18-118020790148-1. The equipment of the Plastometriya shared research facilities (the IES UB RAS) was used in the study.

Keywords: austenitic metastable steels, frictional treatment, hardened layer, hardness, finite element modeling, phase composition

Bibliography:

1.    Odintsov, L.G. Uprochnenie i otdelka detaley poverkhnostnym plasticheskim deformirovaniem: spravochnik [Hardening and Finishing of Parts by Surface Plastic Deformation: Handbook.]. Mechanical Engineering Publ., Moscow, 1987, 329 p. (In Russian).
2.    Savrai, R.A., Makarov, A.V., Malygina, I.Yu., Rogovaya, S.A., and Osintseva, A.L. Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment. Diagnostics, Resource and Mechanics of materials and structures, 2017, 5, 43–62. DOI: 10.17804/2410-9908.2017.5.043-062. Available at: http://dream-journal.org/issues/2017-5/2017-5_149.html
3.    Makarov, A.V., Skorynina, P.A., Osintseva, A.L., Yurovskikh, A.S., and Savrai, R.A. Improving the tribological properties of austenitic 12KH18N10T steel by nanostructuring frictional treatment. Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), 2015, 4 (69), 80–92. DOI: 10.17212/1994-6309-2015-4-80-92. (In Russian).
4.    Makarov, A.V., Savray, R.A., Skorynina, P.A., and Volkova, E.G. Development of methods for steel surface deformation nanostructuring. Metal Science and Heat Treatment, 2020, 62, 61–69. DOI: 10.1007/s11041-020-00529-w.
5.    Narkevich, N.A., Shulepov, I.A, and Mironov, Yu.P. Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment. The Physics of Metals and Metallography, 2017, 118 (4), 399–406. DOI: 10.1134/S0031918X17020090.
6.    Makarov, A.V., Savrai, R.A., Pozdeeva, N.A., Smirnov, S.V., Vichuzhanin, D.I., Korshunov, L.G., and Malygina, I.Yu. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surface & Coatings Technology, 2010, 205 (3), 841–852. DOI: 10.1016/j.surfcoat.2010.08.025.
7.        Vychuzhanin, D.I., Makarov, A.V., Smirnov, S.V., Pozdeeva, N.A., and Malygina, I.Y. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter. Journal of Machinery Manufacture and Reliability, 2011, 40 (6), 554–560. DOI: 10.3103/S1052618811050190.
8.    Wu, Y., Guelorget, B., Sun, Z., Déturche, R., and Retraint, D. Characterization of gradient properties generated by SMAT for a biomedical grade 316L stainless steel. Materials Characterization, 2019, 155, 109788. DOI: 10.1016/j.matchar.2019.109788.
9.    Smelyanskiy, V.M. Mekhanika uprochneniya detaley poverkhnostnym plasticheskim deformirovaniem [Mechanics of Parts Hardening by Surface Plastic Deformation]. Mashinostroenie Publ., Moscow, 2002, 300 p. (In Russian).
10.    Gorkunov, É.S., Zadvorkin, S.M., Mitropolskaya, S.Yu., Vichuzhanin, D.I., and Solovyev, K.E. Change in magnetic properties of metastable austenitic steel due to elastoplastic deformation. Metal Science and Heat Treatment, 2009, 51, 423–428. DOI: 10.1007/s11041-010-9185-x.
11.    Goruleva, L.S., Zadvorkin, S.M., and Mushnikov, A.N Effect of plastic deformation on the phase composition and electromagnetic characteristics of the 321N austenitic steel (08Kh18N10T). Diagnostics, Resource and Mechanics of materials and structures, 2022, 95–106. DOI: 10.17804/2410-9908.2022.6.095-106. Available at: http://dream-journal.org/issues/2022-6/2022-6_387.html
12.    Putilova, E.A., Goruleva, L.S., Zadvorkin, S.M., Skorynina, P.A., Savra,i R.A., and Krucheva, K.D. Evolution of the structure and physical-mechanical properties of metastable steel after surface frictional treatment with varying loading on the indenter. Letters on Materials, 2023, 13 (3), 191–196. DOI: 10.22226/2410-3535-2023-3-191-196.
13.    Dorofeev, A.L. Vikhrevye toki [Eddy Currents]. Energiya Publ., Moscow, 1977, 72 p.
14.    Klyuev, V.V., ed. Nerazrushayushchiy kontrol [Non-Destructive Testing, vol. 2]. Mashinostroenie Publ., Moscow, 2005, 688 p. (In Russian).
15.    Savrai, R.A. and Kogan, L.Kh. Effect of hardening frictional treatment on features of eddy current testing of fatigue degradation of metastable austenitic steel under gigacycle contact fatigue loading. Russian Journal of Nondestructive Testing, 2022, 58 (8), 722–731. DOI: 10.1134/s1061830922080095.
16.    Silva, V.M.A., Camerini, A.C.G., Pardal, J.M., De Blás, J.C.G., and Pereira, G.R. Eddy current characterization of cold-worked AISI 321 stainless steel. Journal of Materials Research and Technology, 2018, 7 (3), 395–401. DOI: 10.1016/j.jmrt.2018.07.002.
17.    Liu, K., Zhao, Z., and Zhang, Z. Eddy current assessment of the cold rolled deformation behavior of AISI stainless steel. Journal of Materials Engineering and Performance, 2012, 21 (8), 1772–1776. DOI: 10.1007/s11665-011-0080-4.
18.    Mirkin, L.I. Rentgenostrukturnyi kontrol mashinostroitelnykh materialov: spravochnik [X-Ray Structural Control of Machine-Building Materials]. MGU Publ., Moscow, 1976, 134 p. (In Russian).
19.    Smirnov, S.V., Pugacheva, N.B., and Myasnikova, M.V. Evaluating ultimate strains to fracture of the zones of a diffusion aluminide coating. Deformatsiya i Razrushenie Materialov, 2014, 12, 17–22. (In Russian).
20.    Smirnov, S.V., Myasnikova, M.V., and Igumnov, A.S. Determination of the local shear strength of a layered metal composite material with a ductile interlayer after thermocycling. Diagnostics, Resource and Mechanics of materials and structures, 2016, 4, 46–56. DOI: 10.17804/2410-9908.2016.4.046-056. Available at: http://dream-journal.org/issues/2016-4/2016-4_88.html–2016. Iss. 4. – P. 46-56
21.    Hu, J., Kulagin, R., Ivanisenko, Yu., Baretzky, B., and Zhang, H. Finite element modeling of Conform-HPTE process for a continuous severe plastic deformation path. Journal of Manufacturing Processes, 2020, 55, 373–380. DOI: 10.1016/j.jmapro.2020.04.052.
22.    Blumenstein, V.Yu, Mahalov, M.S., and Shirokolobova, A.G. Finite element modeling of strengthening process by means of surface plastic deformation using a multiradius tool. IOP Conference Series: Materials Science and Engineering, 2017, 253, 012017. DOI: 10.1088/1757-899x/253/1/012017.
23.    Kragelskiy, I.V. Trenie i iznos [Friction and Wear]. Mashinostroenie Publ., Moscow, 1968, 480 p.
24.    Johnson, K.L. Mekhanika kontaktnogo vzaimodejstviya [Mechanics of Contact Interaction]. Mir Publ., Moscow, 1989, 509 p.
 

Л. С. Горулева, С. М. Задворкин, Д. И. Вичужанин, Р. А. Саврай, П. А. Скорынина

ЭКСПЕРИМЕНТАЛЬНОЕ И РАСЧЕТНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ ПО ГЛУБИНЕ ПРИ ФРИКЦИОННОЙ ОБРАБОТКЕ МЕТАСТАБИЛЬНОЙ АУСТЕНИТНОЙ СТАЛИ

Фрикционная обработка, как один из методов поверхностной пластической деформации, приводит к формированию градиентного упроченного слоя. В случае метастабильных сталей это упрочнение обусловлено, кроме всего прочего, образованием α′-мартенсита деформации. Наиболее достоверную информацию о толщине этого упрочненного слоя можно получить, проводя измерение твердости на поперечных шлифах. В настоящей работе проведено сопоставление распределений деформации по глубине упрочненного слоя, полученных по результатам послойного фазового анализа и конечно-элементного моделирования, с данными дюрометрических исследований для метастабильной стали AISI 321, подвергнутой фрикционной обработке при различных нагрузках на индентор. Установлено, что удовлетворительное совпадение распределений концентрации α′-фазы и твердости по глубине наблюдается только для образца, подвергнутого фрикционной обработке при максимальной нагрузке на индентор 400 Н. При остальных нагрузках на индентор толщина слоя, содержащего α′-мартенсит, меньше толщины упрочненного слоя, оцененного по результатам дюрометрических исследований. В отличие от этого, показано, что для всех примененных при фрикционной обработке нагрузок на индентор наблюдается удовлетворительное согласие распределений по глубине расчетных величин эквивалентной пластической деформации, полученных в результате конечно-элементного моделирования, и экспериментальных значений твердости.

Благодарности: Работа выполнена в рамках государственного задания № АААА-А18-118020790148-1. При проведении исследований использовано оборудование ЦКП «Пластометрия» ИМАШ УрО РАН.

Ключевые слова: аустенитные метастабильные стали, фрикционная обработка, упрочненный слой, твердость, конечно-элементное моделирование, фазовый состав

Библиография:

1.    Одинцов Л. Г. Упрочнение и отделка деталей поверхностным пластическим деформированием : справочник. – М. : Машиностроение, 1987. – 329 с.
2.    Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment / R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 5. – P. 43–62. – DOI: 10.17804/2410-9908.2017.5.043-062. – URL: http://dream-journal.org/issues/2017-5/2017-5_149.html
3.    Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой / А. В. Макаров, П. А. Скорынина, А. Л. Осинцева, А. С. Юровских, Р. А. Саврай // Обработка металлов (технология, оборудование, инструменты). – 2015. – № 4 (69). – С. 80–92. – DOI: 10.17212/1994-6309-2015-4-80-92.
4.    Development of methods for steel surface deformation nanostructuring / A. V. Makarov, R. A. Savray, P. A. Skorynina, E. G. Volkova // Metal Science and Heat Treatment. – 2020. – Vol. 62. – P. 61–69. – DOI: 10.1007/s11041-020-00529-w.
5.    Narkevich N. A., Shulepov I. A, Mironov Yu. P. Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment // The Physics of Metals and Metallography. – 2017. – Vol. 118 (4). – P. 399–406. – DOI: 10.1134/S0031918X17020090.
6.    Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension / A. V. Makarov, R. A. Savrai, N. A. Pozdeeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, I. Yu. Malygina // Surface & Coatings Technology. – 2010. – Vol. 205, iss. 3. – P. 841–852.  – DOI: 10.1016/j.surfcoat.2010.08.025.
7.    Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter / D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, I. Y. Malygina // Journal of Machinery Manufacture and Reliability. – 2011. – Vol. 40 (6). – P. 554–560. – DOI: 10.3103/S1052618811050190.
8.    Characterization of gradient properties generated by SMAT for a biomedical grade 316L stainless steel / Y. Wu, B. Guelorget, Z. Sun, R. Déturche, D. Retraint // Materials Characterization. – 2019. – Vol. 155. – P. 109788. – DOI: 10.1016/j.matchar.2019.109788.
9.    Смелянский В. М. Механика упрочнения деталей поверхностным пластическим деформированием. – М. : Машиностроение, 2002. – 300 с.
10.    Change in magnetic properties of metastable austenitic steel due to elastoplastic deformation / É. S. Gorkunov, S. M. Zadvorkin, S. Yu. Mitropolskaya, D. I. Vichuzhanin, K. E. Solovyev // Metal Science and Heat Treatment. – 2009. – Vol. 51. – P. 423–428. – DOI: 10.1007/s11041-010-9185-x.
11.    Goruleva L. S., Zadvorkin S. M., Mushnikov A. N Effect of plastic deformation on the phase composition and electromagnetic characteristics of the 321N austenitic steel (08Kh18N10T) // Diagnostics, Resource and Mechanics of materials and structures. – 2022. – Iss. 6. – P. 95–106. – DOI: 10.17804/2410-9908.2022.6.095-106. – URL: http://dream-journal.org/issues/2022-6/2022-6_387.html
12.    Evolution of the structure and physical-mechanical properties of metastable steel after surface frictional treatment with varying loading on the indenter / E. A. Putilova, L. S. Goruleva, S. M. Zadvorkin, P. A. Skorynina, R. A. Savrai, K. D. Krucheva // Letters on Materials. – 2023 – Vol. 13 (3). – P. 191–196. – DOI: 10.22226/2410-3535-2023-3-191-196.
13.    Дорофеев А. Л. Вихревые токи. – М. : Энергия, 1977. – 72 с.
14.    Неразрушающий контроль : справочник : в 7 т. / под общ. ред. В. В. Клюева. – М. : Машиностроение, 2003. – 688 с. – Т. 2.
15.    Savrai R.A., Kogan L.Kh. Effect of hardening frictional treatment on features of eddy current testing of fatigue degradation of metastable austenitic steel under gigacycle contact fatigue loading // Russian Journal of Nondestructive Testing. – 2022. – Vol. 58 (8). – P. 722–731. – DOI: 10.1134/s1061830922080095.
16.    Eddy current characterization of cold-worked AISI 321 stainless steel / V. M. A. Silva, C. G. Camerini, J. M Pardal., J. G. De Blаs, G. R. Pereira // Journal of Materials Research and Technology. – 2018. – Vol. 7, iss. 3. – P. 395–401. – DOI: 10.1016/j.jmrt.2018.07.002.
17.    Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI stainless steel // Journal of Materials Engineering and Performance. – 2012. – Vol. 21, iss. 8. – P. 1772–1776. – DOI: 10.1007/s11665-011-0080-4.
18.    Миркин Л. И. Рентгеноструктурный контроль машиностроительных материалов : справочник. – М. : Машиностроение, 1979. – 134 с.
19.    Смирнов С. В., Пугачева (Вандышева) Н. Б., Мясникова М. В. Оценка прочности зон диффузионного алюминидного покрытия // Деформация и разрушение материалов. –2014. – № 12. – С. 17–22.
20.    Smirnov S. V., Myasnikova M. V., Igumnov A. S. Determination of the local shear strength of a layered metal composite material with a ductile interlayer after thermocycling // Diagnostics, Resource and Mechanics of materials and structures. – 2016. – Iss. 4. – P. 46–56. – DOI: 10.17804/2410-9908.2016.4.046-056. – URL: http://dream-journal.org/issues/2016-4/2016-4_88.html–2016. Iss. 4. – P. 46-56
21.    Finite element modeling of Conform-HPTE process for a continuous severe plastic deformation path / J. Hu, R. Kulagin, Yu. Ivanisenko, B. Baretzky, H. Zhang // Journal of Manufacturing Processes. – 2020. – Vol. 55. – P. 373–380. – DOI: 10.1016/j.jmapro.2020.04.052.
22.    Finite element modeling of strengthening process by means of surface plastic deformation using a multiradius tool / V. Yu Blumenstein, M. S. Mahalov, A. G Shirokolobova // IOP Conference Series: Materials Science and Engineering. – 2017. – Vol. 253. – 012017. – DOI: 10.1088/1757-899x/253/1/012017.
23.    Крагельский И. В. Трение и износ. – М. : Машиностроение, 1968. – 480 с.
24.    Джонсон К. Л. Механика контактного взаимодействия / пер. с англ. – М. : Мир, 1989. – 510 с.
 


PDF      

Библиографическая ссылка на статью

An Experimental and Computational Study of Through-Depth Strain Distribution During Frictional Treatment of a Metastable Austenitic Steel / L. S. Goruleva, S. M. Zadvorkin, D. I. Vichuzhanin, R. A. Savrai, P. A. Skorynina // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 6. - P. 132-144. -
DOI: 10.17804/2410-9908.2023.6.132-144. -
URL: http://dream-journal.org/issues/2023-6/2023-6_425.html
(accessed: 08.05.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru