Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2023 Выпуск 3

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

N. B. Pugacheva, T. M. Bykova, E. I. Senaeva, L. S. Goruleva

THERMOPHYSICAL PROPERTIES OF A Cu–Ti–C–B SHS COMPOSITE

DOI: 10.17804/2410-9908.2023.3.050-065

The paper studies the thermophysical properties of a Cu-Ti-C-B composite produced
by self-propagating high-temperature synthesis (SHS) of an initial mixture of copper, titanium, boron carbide (B4C), and carbon powders. The matrix of the composite is a supersaturated solid solution of titanium in a copper lattice with Cu4Ti nanosized particles homogeneously precipitated under cooling. The matrix microhardness is 450 HV 0.1. Particles of titanium carbide (TiC) and titanium diboride (TiB2) resulting from SHS are randomly distributed in the bulk of the composite. The microhardness of the regions with the predominance of TiC particles is 640 HV 0.1, and the microhardness of the regions with the predominance of TiB2 particles is 900 HV 0.1. The average hardness of the composite is 60 HRC. Differential scanning calorimetry demonstrates a unified wide exothermic effect at temperatures ranging from 750 to 1000 °С, with an enthalpy of 148.6 J/g, associated with the exothermic reaction between residual titanium and boron carbide (B4C), which did not react during SHS. The temperature dependences of density, thermal diffusivity, heat capacity, thermal conductivity, and the coefficient of linear thermal expansion are experimentally determined. The particles of the strengthening phases are found to reduce slightly the thermal properties of the composite compared to pure copper. It is shown that annealing at temperatures of 800 and 860°C decreases the level of residual stresses in the composite matrix.

Acknowledgements: The study was financed by the RSF, grant No. 22-29-00188, https://rscf.ru/project/22-29-00188/ “Development of Scientific and Technological Foundations for the Formation of Monolithic SHS Cu–Ti–C–B Composites with Tailored Functional Properties”. The equipment of the Plastomet-riya shared research facilities at the Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, was used in the research.

Keywords: composite, self-propagating high-temperature synthesis, copper matrix, microstructure, heat capaci-ty, thermal conductivity, linear thermal expansion, residual stresses

Bibliography:

  1. Osintsev O.E., Fedorov V.N. Med i mednye splavy. Otechestvennye i zarubezhnye marki: spravochnik [Copper and Copper Alloys. Domestic and Foreign Grades: Reference Book]. Moscow, Innovatsionnoe Mashinostroenie Publ., 2016, 360 p. (In Russian).
  2. Han S.Z., Semboshi S., Ahn J.H., Choi E.-A., Cho M., Kadoi Y., Kim K. & Lee J. Accelerating heterogeneous nucleation to increase hardness and electrical conductivity by deformation prior to ageing for Cu-4 at.% Ti alloy. Philosophical Magazine Letters, 2019, vol. 99, iss. 8, pp. 275–283. DOI: 10.1080/09500839.2019.1670879.
  3. Maki K., Ito Y., Matsunaga H., Mori H. Solid-solution copper alloys with high strength and high electrical conductivity. Scripta Materialia, 2013, vol. 68, pp. 777–780. DOI: 10.1016/j.scriptamat.2012.12.027.
  4. Kolachev B.A., Elagin V.N., and Livanov V.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys]. Moscow, MISIS Publ., 2005, 427 p. (In Russian).
  5. Gorsse S., Ouvrard B., Goune M., Poulon-Quintin A. Microstructural design of new high conductivity – high strength Cu-based alloy. Journal of Alloys and Compounds, 2015, vol. 633, pp. 42–47. DOI: 10.1016/j.jallcom.2015.01.234.
  6. Zhu C., Ma A., Jiang J., Li X., Song D., Yang D., Yuan Y., Chen J. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu–Mg alloys. Journal of Alloys and Compounds, 2014, vol. 582, pp. 135–140. DOI: 10.1016/j.jallcom.2013.08.007.
  7. Volkov A.Yu., Antonov B.D., Patrakov E.I., Volkova E.G., Komkova D.A., Kalonov A.A., Glukhov A.V. Abnormally high strength and low electrical resistivity of the deformed Cu/Mg–composite with a big number of Mg–filaments. Materials & Design, 2020, vol. 185, pp. 108276. DOI: 10.1016/j.matdes.2019.108276.
  8. Merzhanov A.G. Theory of gasless combustion. Arch. Procesow Spalania (Warsaw), 1974, vol. 5, No. 1, pp. 17–39.
  9. Amosov A.P., Borovinskaya I.P., and Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder Technology of Self-Propagating High-Temperature Synthesis of Materials: Textbook]. Moscow, Mashinostroenie–1 Publ., 2007. (In Russian).
  10. Kim J.S., Dudina D.V., Kom J.C., Kwon Y.S., Park J.J., Rhee C.K. Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark–plasma sintering. Journal of Nanoscience and Nanotechnology, 2010, vol. 10, No. 1, pp. 252–257. DOI: 10.1166/jnn.2010.1523.
  11. Hoang O.N.T., Hoang V.N., Kim J.S., Dudina D.V. Structural investigations of TiC–Cu nanocomposites prepared by ball milling and spark plasma sintering. Metals, 2017, vol. 7, iss. 4, pp. 123. DOI: 10.3390/met7040123.
  12. Liang Y.H., Wang H.Y., Yang Y.F., Wang Y.Y., Jiang Q.C. Evolution process of synthesis of TiC in the Cu–Ti–C system. Journal of Alloys and Compounds, 2008, vol. 452, iss. 2, pp. 293–303. DOI: 10.1016/j.jallcom.2006.11.024.
  13. Volkov A.Yu., Kalonov A.A., Komkova D.A. Effect of annealing on the structure, mechanical and electrical properties of Cu/Mg–composite wires. Materials Characterization, 2022, vol. 183, pp. 111606. DOI: 10.1016/j.matchar.2021.111606.
  14. Pugacheva N.B., Nikolin Yu.V., Bykova T.M., Senaeva E.I. Influence of the chemical composition of the matrix on the structure and properties of monolithic SHS composites. Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), 2021, vol. 23, No. 3, pp. 124–138. DOI: 10.17212/1994-6309-2021-23.3-124-138.
  15. Pugacheva N.B., Nikolin Yu.V., Bykova T.M., Senaeva E.I. Structure and properties of a Cu–Ti–C–B composite. Physics of Metals and Metallography, 2022, vol. 123, No. 1, pp. 43–49. DOI: 10.1134/S0031918X22010100.
  16. Pugacheva N.B., Nikolin Yu.V., Senaeva E.I. The structure and wear resistance of a Ti–Ni–Fe–C–B composite. AIP Conf. Proc., 2019, vol. 2176, iss. 1, pp. 020007-1–020007-4. DOI: 10.1063/1.5135119.
  17. Pugacheva N.B.; Bykova T.M., Senaeva E.I. Structure and character of destruction of the Cu–Ti–Al–Ni–Fe–C–B composite after abrasive wear. Physics of Metals and Metallography, 2022, vol. 123, No. 10, pp. 963–970. DOI: 10.1134/S0031918X22600920.
  18. Pugacheva N.B., Orishich A.M, Volkova E.G., Makarov A.V., Senaeva E.I., Malikov A.G. Role of ultra-fine intermetallic particles and martensite in strengthening of AISI 321/Cu/Ti laser welded joint. Material Characterization, 2022, vol. 185, pp. 111702. DOI: 10.1016/j.matchar.2021.111702.
  19. Neimark B.E., ed. Fizicheskie svoistva staley i splavov, primenyaemykh v energetike [Physical Properties of Steels and Alloys Used in Power Engineering: Reference Book]. Moscow, Leningrad, Energiya Publ., 1967, 240 p. (In Russian).
  20. Golovin V.A., Krucher G.N. Listy i lenty iz tyazhelykh tsvetnykh metallov [Sheets and Tapes Made of Heavy Nonferrous Metals]. Moscow, Metallurgiya Publ., 1985, 384 p. (In Russian).
  21. Goldschmidt H.J. Interstitial Alloys, London, Butterworths, 1967, 632 p.

Н. Б. Пугачева, Т. М. Быкова, Е. И. Сенаева, Л. С. Горулева

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА СВС КОМПОЗИТА Cu–Ti–C–B

Проведены исследования теплофизических свойств композита Cu–Ti–C–B, полученного методом самораспространяющегося высокотемпературного синтеза (СВС) исходной смеси порошков меди, титана карбида бора В4С и углерода. Матрица композита представляет собой пересыщенный твердый раствор титана в кристаллической решетке меди с гомогенно выделившимися при охлаждении наноразмерными частицами Cu4Ti. Микротвердость матрицы составила 450 HV 0,1. Частицы карбида титана TiC и диборида титана TiB2, образовавшиеся в результате СВС, хаотично распределены в объеме композита. Микротвердость участков с преобладанием частиц TiC составила 640 HV 0,1, а участков с преобладанием частиц TiB2 – 900 HV 0,1. Средняя твердость композита 60 HRC. Методом дифференциальной сканирующей калориметрии установлен единый широкий экзотермический эффект в интервале температур 750–1000 °C с энтальпией 148,6 Дж/г, связанный с протеканием экзотермической реакцией между остаточными титаном и карбидом бора B4C, непрореагировавшими в ходе СВС. Экспериментально определены температурные зависимости плотности, температуропроводности, теплоемкости, теплопроводности, коэффициента линейного теплового расширения. Установлено, что частицы упрочняющих фаз незначительно снижают теплофизические свойства композита по сравнению с чистой медью. Показано, что отжиги при температурах 800 и 860 °C снижают уровень остаточных напряжений в матрице композита.

Благодарности: Исследования выполнены за счет гранта РНФ № 22-29-00188, https://rscf.ru/project/22-29-00188/ «Разработка научных и технологических основ формирования монолитных СВС-композитов системы Cu–Ti–C–B c заданными функциональными свойствами». Работа выполнена на оборудовании Центра коллективного пользования «Пластометрия» Феде-рального государственного бюджетного учреждения науки Института машиноведения им. Э. С. Горкунова Уральского отделения Российской академии наук.

Ключевые слова: композит, самораспространяющийся высокотемпературный синтез, медная матрица, микро-структура, теплоемкость, теплопроводность, линейное тепловое расширение, остаточные напряжения

Библиография:

  1. Осинцев О. Е., Федоров В. Н. Медь и медные сплавы: отечественные и зарубежные марки : справочник. – 2-е изд. ‒ М. : Инновационное машиностроение, 2016. ‒ 360 с.
  2. Accelerating heterogeneous nucleation to increase hardness and electrical conductivity by deformation prior to ageing for Cu-4 at. % Ti alloy / S. Z. Han, S. Semboshi, J. H. Ahn, E.-A. Choi, M. Cho, Y. Kadoi, K. Kim & J. Lee // Philosophical Magazine Letters. ‒ 2019. ‒ Vol. 99, iss. 8. ‒ P. 275–283. – DOI: 10.1080/09500839.2019.1670879.
  3. Solid-solution copper alloys with high strength and high electrical conductivity / K. Maki, Y. Ito, H. Matsunaga, H. Mori // Scripta Materialia. ‒ 2013. ‒ Vol. 68 (10). ‒ P. 777–780. – DOI: 10.1016/j.scriptamat.2012.12.027.
  4. Колачев Б. А., Елагин В. И., Ливанов В. А. Металловедение и термическая обработка цветных металлов и сплавов. ‒ 4-е изд., перераб. и доп. – М. : МИСИС, 2005. ‒ 427 с.
  5. Microstructural design of new high conductivity – high strength Cu-based alloy / S. Gorsse, B. Ouvrard, M. Goune, A. Poulon-Quintin // Journal of Alloys and Compounds. ‒ 2015. ‒ Vol. 633. ‒ P. 42–47. – DOI: 10.1016/j.jallcom.2015.01.234.
  6. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu–Mg alloys / C. Zhu, A. Ma, J. Jiang, X. Li, D. Song, D. Yang, Y. Yuan, J. Chen. // Journal of Alloys and Compounds. – 2014. – Vol. 582.– P. 135–140. – DOI: 10.1016/j.jallcom.2013.08.007.
  7. Abnormally high strength and low electrical resistivity of the deformed Cu/Mg–composite with a big number of Mg–filaments / A. Yu Volkov, B. D. Antonov, E. I. Patrakov, E. G. Volkova, D. A. Komkova, A. A. Kalonov, A. V. Glukhov // Materials & Design. ‒ 2020. ‒ Vol. 185. ‒ P. 108276. ‒ DOI: 10.1016/j.matdes.2019.108276.
  8. Merzhanov A. G. Theory of gasless combustion // Arch. Procesow Spalania (Warsaw). ‒ 1974. ‒ Vol. 5, No. 1. ‒ P. 17–39.
  9. Амосов А. П., Боровинская И. П., Мержанов А. Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. ‒ М. : Машиностроение–1, 2007. ‒ 471 c.
  10. Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark–plasma sintering / J. S. Kim, D. V. Dudina, J. C. Kom, Y. S. Kwon, J. J. Park, C. K. Rhee // Journal of Nanoscience and Nanotechnology. ‒ 2010. – Vol. 10, No. 1. ‒ P. 252–257. – DOI: 10.1166/jnn.2010.1523.
  11. Structural investigations of TiC–Cu nanocomposites prepared by ball milling and spark plasma sintering / O. N. T. Hoang, V. N. Hoang, J. S. Kim, D. V. Dudina // Metals. ‒ 2017. ‒ Vol. 7, iss. 4. ‒ P. 123. – DOI: 10.3390/met7040123.
  12. Evolution process of synthesis of TiC in the Cu–Ti–C system / Y. H. Liang, H. Y. Wang, Y. F. Yang, Y. Y. Wang, Q. C. Jiang // Journal of Alloys and Compounds. ‒ 2008 ‒ Vol. 452, iss. 2. ‒ P. 293–303. – DOI: 10.1016/j.jallcom.2006.11.024.
  13. Volkov A. Yu., Kalonov A. A., Komkova D. A. Effect of annealing on the structure, mechanical and electrical properties of Cu/Mg–composite wires // Materials Characterization. ‒ 2022. ‒ Vol. 183. ‒ P. 111606. – DOI: 10.1016/j.matchar.2021.111606.
  14. Влияние химического состава матрицы на структуру и свойства монолитных СВС-композитов / Н. Б. Пугачева, Ю. В. Николин, Т. М. Быкова, Е. И. Сенаева // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 3.– P. 124–138. – DOI: 10.17212/1994-6309-2021-23.3-124-138.
  15. Structure and properties of a Cu–Ti–C–B composite / N. B. Pugacheva, Yu. V. Nikolin, T. M. Bykova, E. I. Senaeva // Physics of Metals and Metallography. – 2022. – Vol. 123, No. 1. – P. 43–49. – DOI: 10.1134/S0031918X22010100.
  16. Pugacheva N. B., Nikolin Yu. V., Senaeva E. I. The structure and wear resistance of a Ti–Ni–Fe–C–B composite // AIP Conf. Proc. – 2019. – Vol. 2176, iss. 1. – P. 020007-1–020007-4. – DOI: 10.1063/1.5135119.
  17. Pugacheva N. B., Bykova T. M., Senaeva E. I. Structure and character of destruction of the Cu–Ti–Al–Ni–Fe–C–B composite after abrasive wear // Physics of Metals and Metallography. – 2022. – Vol. 123, No. 10. – P. 963–970. – DOI: 10.1134/S0031918X22600920.
  18. Role of ultra-fine intermetallic particles and martensite in strengthening of AISI 321/Cu/Ti laser welded joint / N. B. Pugacheva, A. M. Orishich, E. G. Volkova, A. V. Makarov, E. I. Senaeva, A. G. Malikov // Material Characterization. – 2022. – Vol. 185. – P. 111702. – DOI: 10.1016/j.matchar.2021.111702.
  19. Физические свойства сталей и сплавов, применяемых в энергетике : справочник / под ред. Б. Е. Неймарка. ‒ Москва; Ленинград : Энергия, 1967. ‒ 240 с.
  20. Головин В. А., Кручер Г. Н. Листы и ленты из тяжелых цветных металлов. ‒ М. : Металлургия, 1985. ‒ 383 с.
  21. Гольдшмидт Х. Дж. Сплавы внедрения : в 2 вып. / пер. с англ. С. Н. Горина и Б. А. Клыпина ; под ред. Н. Т. Чеботарева. – Москва : Мир, 1971. – Вып. 1. – 424 с.

PDF      

Библиографическая ссылка на статью

Thermophysical Properties of a Cu–ti–c–b Shs Composite / N. B. Pugacheva, T. M. Bykova, E. I. Senaeva, L. S. Goruleva // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 3. - P. 50-65. -
DOI: 10.17804/2410-9908.2023.3.050-065. -
URL: http://dream-journal.org/issues/2023-3/2023-3_401.html
(accessed: 19.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru