Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2022 Выпуск 1

2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. V. Nazarov

A REVIEW OF EXPERIMENTAL STUDIES OF CREEP AND CREEP RUPTURE STRENGTH (2004-2021 YEARS)

DOI: 10.17804/2410-9908.2022.1.038-051

The paper reviews studies conducted between 2004 and 2021 for various metal materials (magnesium-lithium alloy, copper, aluminum alloy, titanium alloy, steel, nickel alloy) in the temperature range from 20 to 1100 °C. In those studies the test results were obtained for isothermal creep under uniaxial tension and complex stress. The number of such studies is limited. This review does not include studies dealing with the chemical interaction of the environment with a metal material. Among these studies there are little-known and unique results. In one of those studies, the creep of a magnesium-lithium alloy at normal temperature was considered for the first time. In another study, creep curves for heat-resistant steel were supplemented with experimental stress–strain diagrams in a wide range of high temperatures. Another distinctive study, for the characteristic times of the creep process, compares photographs of changes in the microstructure and the creep curve up to the rupture time. The review lists studies that found an ambiguity in the effect of biaxial tension on the rupture time in comparison with uniaxial tension. It enumerates complex equivalent stresses with the possibility of describing the relative difference in the rupture time under uniaxial tension, biaxial tension, and triaxial tension.

Acknowledgements: The work was partially financially supported by the Russian Foundation for Basic Research, grant 20-08-00387.

Keywords: creep, creep rupture, multiaxial tension, equivalent stress

Bibliography:

  1. Navier C.L.M.H. Experiences sur la resistance de divers substances a la rupture causee par une tension longuitudinale. Annales de chimie et de physique, 1826, vol. 33, pp. 225–40.
  2. Vicat L.J. Note sur l'Allongement Progressif du Fil de Fer Soumis ã Divers Tensions. Annales des Ponts et Chaussées, Mémoirs, first series, first semester, 1834, pp. 40–44.
  3. Edward Neville Da Costa Andrade. On the Viscous Flow in Metals, and Allied Phenomena. Proceedings of the Royal Society А 1910, vol. 84, No. 567, pp. 1–12. DOI: 10.1098/rspa.1910.0050.
  4. Norton F.H. The Creep of steel at high temperatures. New York, Mc. Graw-Hill Book Company, 1929.
  5. Bailey R.W. Creep of steel under simple and compound stresses and the use of high initial temperature in steam power plant. Transactions of the World Power Conference. Tokyo, 1929, vol. 3.
  6. Shesterikov S.A., Yumasheva M.A. Shesterikov S. A., Yumasheva M. A. More precise specification of the equation of state in creep theory. Mechanics of Solids, 1984. vol. 19, No. 1, pp. 81–85.  
  7. Nazarov V.V., LepeshkinA.R. A method for calculating creep limits. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 1, pp. 36−42. DOI: 10.17804/2410-9908.2017.1.036-042. Available at: https://dream-journal.org/DREAM_Issue_1_2017_Nazarov_V.V._et_al._036_042.pdf
  8. Nazarov V.V. Analysis of two methods for calculating the ultimate stresses of creep and creep rupture processes. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 2, pp. 28–36. DOI: 10.17804/2410-9908.2019.2.028-036. Available at: https://dream-journal.org/DREAM_Issue_2_2019_Nazarov_V.V._028_036.pdf
  9. Koval’kov V.K., Nazarov V.V., Novotnyi S.V. Procedure of high-temperature within complex stressed state. Zavod. Lab. Diagn. Mater., 2006, vol. 72, No. 4, pp. 42–44. (In Russian).
  10. Manna G., Castello P., Harskamp F., Hurst R., Wilshire B. Testing of welded 2.25CrMo steel, in hot, high-pressure hydrogen under creep conditions. Engineering Fracture Mechanics, 2007, vol. 74, iss. 6, pp. 956–968. DOI: 10.1016/j.engfracmech.2006.08.021.
  11. Johnson А.Е., Henderson J., Mathur V.D. Combined stress creep fracture of a commercial copper at 250° C. Engineer, 1956, vol. 202, No. 5248, pp. 261–265.
  12. Johnson A.E., Henderson J., Mathur V.D. Complex Stress Creep Fracture of an Aluminium Alloy: An Investigation Conducted at an Elevated Temperature. Aircraft Engineering and Aerospace Technology, 1960, vol. 32, No 6, pp. 161–170. DOI: 10.1108/eb033263.
  13. Lokoshchenko A.M., Nazarov V.V. Choice of Long-Term Strength Criteria for Metals in Combined Stress State. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 2004, no. 7 (15), pp. 124–128. (In Russian). Available at: http://nbuv.gov.ua/UJRN/aktit_2004_7_27
  14. Nazarov V.V., Lepeshkin A.R. Analysis of various equivalent stress options for describing the creep rupture process under a complex stress state. AIP Conference Proceedings, 2020, vol. 2315, pp. 020029. DOI: 10.1063/5.0037057.
  15. Lokoshchenko A.M., Nazarov V.V. Kinetic approach of investigation of creep-rupture for metals under biaxial tension. Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 2005, No. 10 (26), pp. 73–79. (In Russian). Available at: http://nbuv.gov.ua/UJRN/aktit_2005_10_15
  16. Kobayashi H., Ohki R., Itoh T., Sakane M. Multiaxial creep damage and lifetime evaluation under biaxial and triaxial stresses for type 304 stainless steel. Engineering Fracture Mechanics, 2017, vol. 174, pp. 30–43. DOI: 10.1016/j.engfracmech.2017.01.001.
  17. Sakane M., Kobayashi H., Ohki R., Itoh T. Creep void formation and rupture lifetime in multiaxial stress states. Key Engineering Materials, 2019, vol. 795, pp. 159–164. DOI: 10.4028/www.scientific.net/KEM.795.159.
  18. Golubovskii E.R. and Demidov A.G. Estimation of Long-Term Strength of Alloy EI437BU-VD for Gas Turbine Disks in Combined Stress State. Vestnik Dvigatelestr., 2008, No. 3, pp. 106–110. (In Russian).
  19. Ilyin S.I., Koryagin Yu.D., Lapina I.V. Creep of ultralight magnesium alloys at low temperatures. Vestnik YuUGU. Seriya Metallurgiya. 2012, No. 15. pp. 105–107. (In Russian).
  20. Jiang Y., Lin Y., Phaniraj C., Xia Y., Zhou H. Creep and creep rupture behavior of 2124–T851 aluminum alloy. High Temperature Materials and Processes, 2013, vol. 32, iss. 6, pp. 533–540. DOI: 10.1515/htmp-2012-0172.
  21. Nazarov V.V. Short-term creep of titanium alloys VT5 and VT6 at high temperature. Zavodskaya Laboratoriya. Diagnostika Materialov. 2015, vol. 81, No. 6, pp. 57–60. (In Russian).
  22. Zeng L.Y., Zhao Y.Q., Mao X.N., Hong Q., Qi Y.L. Creep features of Ti-600 alloy at the temperature of 650 C. Materials Science Forum, 2018, vol. 941, pp. 995–1003. DOI: 10.4028/www.scientific.net/MSF.941.995.
  23. Niu L. B., Kobayashi M., Takaku H., Azuma T. Aging effect on creep rupture properties of super-clean 9%CrMoV steel for steam turbine rotors of combined cycle power plants. Key Engineering Materials, 2004, vol. 274–276, pp. 931–936. DOI: 10.4028/www.scientific.net/KEM.274-276.931.
  24. Niu L.B., Matsushima I., Akiu T. Influence of aging on creep rupture properties of heat resistant steels for steam turbine rotors of thermal power plants. Advanced Materials Research, 2011, vol. 291–294, pp. 1122–1125. DOI: 10.4028/www.scientific.net/KEM.274-276.931.
  25. Thomas A., Seliger P. Creep properties and damage behaviour of component-like tubes of Vm12-materials. Materials at High Temperatures, 2011, vol. 28, No 2, pp. 114–119. DOI: 10.3184/096034011X13059086139272.
  26. Goyal S., Laha K., Selvi S.P., Mathew M.D. Mechanistic approach for prediction of creep deformation, damage and rupture life of different Cr–Mo ferritic steels. Materials at High Temperatures, 2014, vol. 31, iss. 3, pp. 211–220. DOI: 10.1179/1878641314Y.0000000016.
  27. Wang Y., Zhang W., Wang Y., Lim Y. C., Yu X., Feng Z. Experimental evaluation of localized creep deformation in grade 91 steel weldments. Materials Science and Engineering: A., 2021, vol. 799, pp. 140356. DOI: 10.1016/j.msea.2020.140356.
  28. Nguyen T.T., Jeong T.M., Erten D.T., Yoon K.B. Creep deformation and rupture behaviour of service-exposed super 304H steel boiler tubes. Materials at High Temperatures, 2021, vol. 38, iss. 1, pp. 61–72. DOI:10.1080/09603409.2020.1830609.
  29. Xie Z.G., He Y.M., Yang J.G., Gao Z.L. Microstructural evolution of nuclear power steel A508-III in the creep process at 800°C. Applied Mechanics and Materials, 2017, vol. 853, pp. 153−157. DOI: 10.4028/www.scientific.net/AMM.853.153.
  30. Mohta K., Gupta S. K., Cathirvolu S., Jaganathan S., Chattopadhya J. High temperature deformation behavior of Indian PHWR Calandria material SS 304L. Nuclear Engineering and Design, 2020, vol. 368, pp. 110801. DOI: 10.1016/j.nucengdes.2020.110801.
  31. Kim S.J., Kong Y.S., Roh Y.J., Jung W.T. On statistical properties of high temperature creep rupture data in STS304 stainless steels. Key Engineering Materials, 2006, vol. 326–328, pp. 553−556. DOI: 10.4028/www.scientific.net/KEM.326-328.553.
  32. Nai Q.Z., Hong X., Xue P.M., Gang W. Study on high temperature creep behaviors of P92 steel. Key Engineering Materials, 2011, vol. 452–453, pp. 521–524. DOI: 10.4028/www.scientific.net/KEM.452-453.521.
  33. Facai R., Xiaoying T. Mechanical properties of Grade 91 steel at high temperatures. Journal of Physics: Conference Series, 2019, vol. 1168, iss. 2, pp. 022013. DOI: 10.1088/1742-6596/1168/2/022013.
  34. Dao V.H., Yoon K.B., Yang G., Oh J.S. Determination of creep constitutive model for 28−48WCo alloy based on experimental creep tests at 817–982°C. Journal of Mechanical Science and Technology, 2018, vol. 32, pp. 4201–4208. DOI: 10.1007/s12206-018-0818-0.
  35. Chu Z., Yu J., Sun X., Guan H., Hu Z. High-temperature creep deformation and fracture behavior of a directionally solidified Ni-base superalloy DZ951. Metallurgical and Materials Transactions: A., 2009, vol. 40, pp. 2927. DOI: 10.1007/s11661-009-0001-4.
  36. Nomura K., Kubushiro K., Nakagawa H., Murata Y. Creep rupture strength for weld joint of 23Cr–45Ni–7W alloy. Materials Transactions, 2016, vol. 57, iss. 12, pp. 2097–2103. DOI: 10.2320/matertrans.M2016242.
  37. Naprienko S.A., Orlov M.R. Destruction of single-crystal turbine blades of ground-based GTU. Proceedings of VIAM, 2016, No. 2 (38), pp. 20–31. DOI: 10.18577/2307-6046-2016-0-2-3-3. (In Russian).
  38. Nazarov V.V. Determination of creep properties under tension and torsion of copper tubular specimens. Inorganic Materials, 2014, vol. 50, pp. 1514–1515. DOI: 10.18577/2307-6046-2016-0-2-3-3.
  39. Nazarov V.V. Mechanical properties of a VT1-0 titanium alloy creep under tension and torsion of tubular specimens. Zavodskaya Laboratoriya. Diagnostika materialov, 2017, vol. 83, No. 2, pp. 66–68. (In Russian).
  40. Golubovsky E.R., Demidov A.G. Creep-rupture strength and equivalence criterion of stress states of EI698VD alloy for GTD disks. Vestnik Dvigatelestroeniya, 2012, No. 2, pp. 264–268. (In Russian).
  41. Himeno T., Chuman Y., Tokiyoshi T., Fukahori T., Igari T. Creep rupture behaviour of circumferentially welded mod. 9Cr–1Mo steel pipe subject to internal pressure and axial load. Materials at High Temperatures, 2016, vol. 33, iss. 6, pp. 636–643. DOI: 10.1080/09603409.2016.1226703.
  42. Itoh R., Hikida T., Ogawa F., Itoh T., Sakane M., Zhang S. Biaxial tensile creep damage of Mod.9Cr−1Mo steel using cruciform specimen. Proceedings of 9th China−Japan Bilateral Symposium on High Temperature Strength of Materials, 2016, pp. 60–66.
  43. Lokoshchenko A.M. Estimation of equivalent stresses in the analysis of long-term strength of metals under combined stress state. Mechanics of Solids, 2010, vol. 45, pp. 633–647. DOI: 10.3103/S0025654410040126.

В. В. Назаров

ОБЗОР ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ПОЛЗУЧЕСТИ И ДЛИТЕЛЬНОЙ ПРОЧНОСТИ (2004–2021 гг.)

Рассмотрены работы 2004−2021 гг. для различных металлических материалов (магниево-литиевый сплав, медь, алюминиевый сплав, титановый сплав, сталь, никелевый сплав) в температурном диапазоне 20−1100 °C. В этих работах получены результаты испытаний для изотермической ползучести при одноосном растяжении и сложном напряженном состоянии. Количество таких работ ограничено. В данный обзор не вошли работы, в которых рассмотрено химическое взаимодействие окружающей среды с металлическим материалом. В представленных работах присутствуют малоизвестные и уникальные результаты, впервые рассмотрена ползучесть магниево-литиевого сплава при комнатной температуре, впервые кривые ползучести для жаропрочной стали дополнены экспериментальными диаграммами напряжение – деформация в широком диапазоне значений высокой температуры. Для характерных моментов времени процесса ползучести сделано сопоставление фотоснимков изменения микрострутуры и кривой ползучести до момента времени разрушения. Перечислены работы, в которых из эксперимента по сравнению с одноосным растяжением обнаружена неоднозначность во влиянии двухосного растяжения на время в момент разрушения. В обзоре перечислены сложные эквивалентные напряжения с возможностью описания относительного различия значений времени в момент разрушения при одноосном растяжении, двухосном растяжении и трехосном растяжении.

Благодарности: Работа выполнена при частичной финансовой поддержке Российского Фонда Фун-даментальных Исследований (грант 20−08−00387).

Ключевые слова: ползучесть, длительная прочность, многоосное растяжение, эквивалентное напряжение

Библиография:

  1. Navier C. L. M. H. Experiences sur la resistance de divers substances a la rupture causee par une tension longuitudinale // Annales de chimie et de physique. – 1826. – Vol. 33. – P. 225–240.
  2. Vicat L. J. Note sur l'allongement progressif du fil de fer soumis a divers tensions // Annales des ponts et chausses – 1834. – P. 40–44.
  3. Edward Neville Da Costa Andrade. On the viscous flow in metals and allied phenomena // Proceedings of the Royal Society. – 1910. – Vol. 84, No. 567. – P. 1–12. – DOI: 10.1098/rspa.1910.0050.
  4. Norton F. H. Creep of Steel at high temperatures // New York : Mc. Graw-Hill Book Company, 1929.
  5. Bailey R. W. Creep of steel under simple and compound stresses and the use of high initial temperature in steam power plant // Transactions of the World Power Conference. – Tokyo, 1929. – Vol. 3.
  6. More precise specification of the equation of state in creep theory / S. A. Shesterikov, M. A. Yumasheva, S. A. Shesterikov, M. A. Yumasheva // Mechanics of Solids. – 1984. – Vol. 19, No. 1. – P. 81–85.
  7. Nazarov V. V., Lepeshkin A. R. A method for calculating creep limits // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 1. – P. 36–42. – DOI: 10.17804/2410-9908.2017.1.036-042 – URL: https://dream-journal.org/DREAM_Issue_1_2017_Nazarov_V.V._et_al._036_042.pdf
  8. Nazarov V. V. Analysis of two methods for calculating the ultimate stresses of creep and creep rupture processes // Diagnostics, Resource and Mechanics of materials and structures. – 2019. – Iss. 2. – P. 28–36. – DOI: 10.17804/2410-9908.2019.2.028-036. – URL: https://dream-journal.org/DREAM_Issue_2_2019_Nazarov_V.V._028_036.pdf
  9. Ковальков В. К., Назаров В. В., Новотный С. В. Методика проведения высокотемпературных испытаний при сложном напряженном состоянии // Заводская лаборатория. Диагностика материалов. – 2006. – Т. 72, № 4. – С. 42–44.
  10. Testing of welded 2.25CrMo steel, in hot, high-pressure hydrogen under creep conditions / G. Manna, P. Castello, F. Harskamp, R. Hurst, B. Wilshire // Engineering Fracture Mechanics. – 2007. –Vol. 74. –Iss. 6. –P. 956−968. – DOI: 10.1016/j.engfracmech.2006.08.021.
  11. Johnson А. Е., Henderson J., Mathur V. D. Combined stress creep fracture of a commercial copper at 250°C // Engineer. – 1956. – Vol. 202, No. 5248. – P. 261–265.
  12. Johnson A. E., Henderson J., Mathur V. D. Complex stress creep fracture of an aluminium alloy: An Investigation Conducted at an Elevated Temperature // Aircraft Engineering and Aerospace Technology. – 1960. – Vol. 32, No. 6. – P. 161–170. – DOI: 10.1108/eb033263.
  13. Локощенко А. М., Назаров В. В. Выбор критериев длительной прочности металлов при сложном напряженном состоянии // Авиационно-космическая техника и технология. – 2004. – № 7 (15). – С. 124–128. – URL: http://nbuv.gov.ua/UJRN/aktit_2004_7_27
  14. Nazarov V. V., Lepeshkin A. R. Analysis of various equivalent stress options for describing the creep rupture process under a complex stress state // AIP Conference Proceedings. – 2020. – Vol. 2315. – 020029. – DOI: 10.1063/5.0037057.
  15. Локощенко А. М., Назаров В. В. Кинетический подход исследования длительной прочности металлов при двухосном растяжении // Авиационно-космическая техника и технология. – 2005. – № 10 (26). – С. 73–79. – URL: http://nbuv.gov.ua/UJRN/aktit_2005_10_15
  16. Multiaxial creep damage and lifetime evaluation under biaxial and triaxial stresses for type 304 stainless steel / H. Kobayashi, R. Ohki, T. Itoh, M. Sakane // Engineering Fracture Mechanics. – 2017. – Vol. 174. – P. 30–43. – DOI: 10.1016/j.engfracmech.2017.01.001.
  17. Creep void formation and rupture lifetime in multiaxial stress states / M. Sakane, H. Kobayashi, R. Ohki, T. Itoh // Key Engineering Materials. – 2019. – Vol. 795. – P. 159–164. – DOI: 10.4028/www.scientific.net/KEM.795.159.
  18. Голубовский Е. Р., Демидов А. Г. Оценка длительной прочности при сложном напряженном состоянии сплава ЭИ437БУ-ВД для дисков ГТД // Вестник двигателестроения. – 2008. – № 3. – С. 106–110.
  19. Ильин С. И., Корягин Ю. Д., Лапина И. В. Ползучесть ультралегких магниевых сплавов при низких температурах // Вестник Южно−Уральского государственного университета. Серия: Металлургия. – 2012. – № 15. – С. 105–107. – URL: https://vestnik.susu.ru/metallurgy/article/view/1371
  20. Creep and creep rupture behavior of 2124−T851 aluminum alloy / Y. Jiang, Y. Lin, C. Phaniraj, Y. Xia, H. Zhou // High Temperature Materials and Processes. – 2013. – Vol. 32. – Iss. 6. – P. 533–540. – DOI: 10.1515/htmp-2012-0172.
  21. Назаров В. В. Кратковременная ползучесть титановых сплавов ВТ5 и ВТ6 при высокой температуре // Заводская лаборатория. Диагностика материалов. – 2015. – Т. 81, № 6. – С. 57−60.
  22. Creep features of Ti−600 alloy at the temperature of 650°C / L. Y. Zeng, Y. Q. Zhao, X. N. Mao, Q. Hong, Y. L. Qi // Materials Science Forum. – 2018. – Vol. 941. – P.  –DOI: 10.4028/www.scientific.net/MSF.941.995.
  23. Niu L. B., Kobayashi M., Takaku H., Azuma T. Aging effect on creep rupture properties of super-clean 9%CrMoV steel for steam turbine rotors of combined cycle power plants // Key Engineering Materials. – 2004. – Vol. 274–276. – P. 931–936. – DOI: 10.4028/www.scientific.net/KEM.274-276.931.
  24. Niu L. B., Matsushima I., Akiu T. Influence of aging on creep rupture properties of heat resistant steels for steam turbine rotors of thermal power plants // Advanced Materials Research. – 2011. – Vol. 291–294. – P. 1122–1125. – DOI: 10.4028/www.scientific.net/AMR.291-294.1122.
  25. Thomas A., Seliger P. Creep properties and damage behaviour of component-like tubes of Vm12-materials // Materials at High Temperatures. – 2011. – Vol. 28. – No 2. – P. 114–119. – DOI: 10.3184/096034011X13059086139272.
  26. Mechanistic approach for prediction of creep deformation, damage and rupture life of different Cr–Mo ferritic steels / S. Goyal, K. Laha, S. P. Selvi, M. D. Mathew // Materials at High Temperatures. – 2014. – Vol. 31, iss. 3. – P. 211–220. – DOI: 10.1179/1878641314Y.0000000016.
  27. Experimental evaluation of localized creep deformation in grade 91 steel weldments / Y. Wang, W. Zhang, Y. Wang, Y. C. Lim, X. Yu, Z. Feng // Materials Science and Engineering: A. – 2021. – Vol. 799. – P. 140356. – DOI:10.1016/j.msea.2020.140356.
  28. Creep deformation and rupture behaviour of service-exposed super 304H steel boiler tubes / T. T. Nguyen, T. M. Jeong, D. T. Erten, K. B. Yoon // Materials at High Temperatures. – 2021. – Vol. 38, iss. 1. – P. 61–72. – DOI:10.1080/09603409.2020.1830609.
  29. Microstructural evolution of nuclear power steel A508-III in the creep process at 800°C / Z. G. Xie, Y. M. He, J. G. Yang, Z. L. Gao // Applied Mechanics and Materials. – 2017. – Vol. 853. – P. 153–157. – DOI: 10.4028/www.scientific.net/AMM.853.153.
  30. High temperature deformation behavior of Indian PHWR Calandria material SS 304L / K. Mohta, S. K. Gupta, S. Cathirvolu, S. Jaganathan, J. Chattopadhya // Nuclear Engineering and Design. –2020. – Vol. 368. – P. 110801. – DOI: 10.1016/j.nucengdes.2020.110801.
  31. On statistical properties of high temperature creep rupture data in STS304 stainless steels / S. J. Kim, Y. S. Kong, Y. J. Roh, W. T. Jung // Key Engineering Materials. – 2006. –Vol. 326–328. – P. 553–556. – DOI: 10.4028/www.scientific.net/KEM.326-328.553.
  32. Nai Q. Z., Hong X., Xue P. M., Gang W. Study on high temperature creep behaviors of P92 steel // Key Engineering Materials. – 2011. – Vol. 452–453. – P. 521−524. – DOI: 10.4028/www.scientific.net/KEM.452-453.521.
  33. Facai R., Xiaoying T. Mechanical properties of Grade 91 steel at high temperatures // Journal of Physics: Conference Series. – 2019. – Vol. 1168, iss. 2. – P. 022013. – DOI: 10.1088/1742-6596/1168/2/022013.
  34. Determination of creep constitutive model for 28−48WCo alloy based on experimental creep tests at 817–982°C / V. H. Dao, K. B. Yoon, G. Yang, J. S. Oh // Journal of Mechanical Science and Technology. – 2018. – Vol. 32. – P. 4201–4208. – DOI: 10.1007/s12206-018-0818-0.
  35. High-temperature creep deformation and fracture behavior of a directionally solidified Ni-base superalloy DZ951/ Z. Chu, J. Yu, X. Sun, H. Guan, Z. Hu // Metallurgical and Materials Transactions: A. – 2009. – Vol. 40. – P. 2927. – DOI: 10.1007/s11661-009-0001-4.
  36. Creep rupture strength for weld joint of 23Cr−45Ni−7W alloy / K. Nomura, K. Kubushiro, H. Nakagawa, Y. Murata // Materials Transactions. –2016. – Vol. 57, iss. 12. – P. 2097−2103. – DOI: 10.2320/matertrans.M2016242.
  37. Наприенко С. А., Орлов М. Р. Разрушение монокристаллических лопаток турбины наземных ГТУ // Труды ВИАМ. – 2016. – № 2 (38). – С. 20–31. – DOI: 10.18577/2307-6046-2016-0-2-3-3.
  38. Nazarov V. V. Determination of creep properties under tension and torsion of copper tubular specimens // Inorganic Materials. – 2014. – Vol. 50. – P. 1514–1515. – DOI:10.1134/S0020168514150138.
  39. Назаров В. В. Механические характеристики ползучести титанового сплава ВТ1−0 при растяжении и кручении трубчатых образцов // Заводская лаборатория. Диагностика материалов. – 2017. – Т. 83, № 2. – С. 66–68.
  40. Голубовский Е. Р., Демидов А. Г. Длительная прочность и критерий эквивалентности напряженных состояний сплава ЭИ698ВД для дисков ГТД // Вестник двигателестроения. – 2012. – № 2. – С. 264–268.
  41. Creep rupture behaviour of circumferentially welded mod. 9Cr–1Mo steel pipe subject to internal pressure and axial load / T. Himeno, Y. Chuman, T. Tokiyoshi, T. Fukahori, T. Igari // Materials at High Temperatures. – 2016. – Vol. 33, iss. 6. – P. 636–643. – DOI: 10.1080/09603409.2016.1226703.
  42. Biaxial tensile creep damage of Mod.9Cr−1Mo steel using cruciform specimen / R. Itoh, T. Hikida, F. Ogawa, T. Itoh, M. Sakane, S. Zhang // Proceedings of 9th China–Japan Bilateral Symposium on High Temperature Strength of Materials. – 2016. – P. 60–66.
  43. Lokoshchenko A. M. Estimation of equivalent stresses in the analysis of long-term strength of metals under combined stress state // Mechanics of Solids. – 2010. – Vol. 45. – P. 633–647. – DOI:10.3103/S0025654410040126.

PDF      

Библиографическая ссылка на статью

Nazarov V. V. A Review of Experimental Studies of Creep and Creep Rupture Strength (2004-2021 Years) [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 1. - P. 38-51. -
DOI: 10.17804/2410-9908.2022.1.038-051. -
URL: http://dream-journal.org/issues/2022-1/2022-1_338.html
(accessed: 02.02.2023).  

 

импакт-фактор
РИНЦ 0.42

 

МРДМК 2022
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2023, www.imach.uran.ru