Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2021 Выпуск 3

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

T. P. Tolmachev, V. P. Pilyugin, A. M. Patselov, N. V. Nikolayeva, A. M. Vlasova

PRESSURE DEPENDENCE OF SHEAR STRESS DURING HIGH-PRESSURE TORSION OF Au-Co ALLOYS IN LIQUID NITROGEN

DOI: 10.17804/2410-9908.2021.3.006-016

Measurements of shear stress were for the first time carried out during mechanical alloying by high-pressure torsion of a gold-cobalt powder mixture at cryogenic temperature under various pressures. The pressures were about 5, 8, 10, and 12 GPa. The Au-Co system is characterized by limited solubility and different properties of the constituents. It has been found that, in comparison with the data obtained for torsion at room temperature, the shear stress values are higher both at the stage of initial intensive growth and subsequently, upon reaching saturation. With an increase in the pressure of low-temperature torsion, a corresponding increase in resistance to shear strain is observed at all the stages of processing. In this case, the shape of the curves at each new pressure changes, as does the staging of the strain dependence. This reflects the extreme heterogeneity of the phase composition and structure formation in the non-equilibrium alloy. The most intense reflections in the X-ray diffractogram correspond to a supersaturated fcc solid solution of cobalt based on gold. Also as a result of mechanical alloying, the components of the system are evenly distributed on the fracture surface of the alloy.

Acknowledgement: The research was financially supported by the RFBR under project No. 19-32-60039 and partially under the state assignment from the Ministry of Education and Science of the Russian Federation (theme Pressure, No. AAAA-A18-118020190104-3). The materials were produced and processed at the IMP UB RAS, Ekaterinburg. The electron microscope investigations were made with the use of the equipment of the Testing Center of Nanotechnology and Advanced Materials shared access center at the IMP UB RAS, Ekaterinburg.

Keywords: mechanical alloying, high-pressure torsion, cryogenic deformation, Au-Co system of limited solubility, in-situ shear stress vs strain

References:

  1. Okamoto H., Massalski T.B., Hasebe M., Nishizawa T. The Au-Co (Gold-Cobalt) system. Bulletin of Alloy Phase Diagrams, 1985, vol. 6, pp. 449–454. DOI: 10.1007/BF02869509.
  2. Barabash O.M., Koval Yu.N. Struktura i svoystva metallov i splavov [Structure and Properties of Metals and Alloys]. Kiev, Naukova Dumka Publ., 1986, 599 p. (In Russian).
  3. Miedema A.R., De Chatel P.F., De Boer F.R. Cohesion in alloys – fundamentals of a semi-empirical model. Physica B, 1980, vol. 100, pp. 1–28. DOI: 10.1016/0378-4363(80)90054-6.
  4. M. E. Drits, ed. Svoystva elementov [Properties of Elements: A Handbook]. Moscow, Metallurgiya Publ., 1985. (In Russian).
  5. Yin J., Chen G., Tang H., Qu X. Athermal ω phase transformation from β in Ti-28Ta driven by ultra-rapid quenching. International Journal of Refractory Metals and Hard Materials, 2020, vol. 92, pp. 105250. DOI: 10.1016/j.ijrmhm.2020.105250.
  6. Meng X., Zhang D., Zhang W., Qiu C., Liang G., Chen J. Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion. Journal of Alloys and Compounds, 2020, vol. 819, pp. 152990. DOI: 10.1016/j.jallcom.2019.152990.
  7. Belkacemi L.T., Meslin E., Décamps B., Crocombette J.-P., Tissot O., Vandenberghe T., Desgardin P., Sauvage T., Berthier C. Role of displacement cascades in Ni clustering in a ferritic Fe-3.3 at%Ni model alloy: Comparison of heavy and light particle irradiations. Scripta Materialia, 2020, vol. 188, pp. 169–173. DOI: 10.1016/j.scriptamat.2020.07.031.
  8. Tejeda-Ochoa A., Kametani N., Carreño-Gallardo C., Ledezma-Sillas J.E., Adachi N., Todaka Y., Herrera-Ramirez J.M. Formation of a metastable fcc phase and high Mg solubility in the Ti-Mg system by mechanical alloying. Powder Technology, 2020, vol. 374, pp. 348–352. DOI: 10.1016/j.powtec.2020.07.053.
  9. Dobromyslov A.V., Taluts N.I., Pilyugin V.P. Severe plastic deformation by high-pressure torsion of Hf and Hf-Ti alloys. International Journal of Refractory Metals and Hard Materials, 2020, vol. 93, pp. 105354. DOI: 10.1016/j.ijrmhm.2020.105354.
  10. Sun J., Ke Q., Chen W. Material instability under localized severe plastic deformation during high speed turning of titanium alloy Ti-6.5AL-2Zr-1Mo-1V. Journal of Materials Processing Technology, 2019, vol. 264, pp. 119–128. DOI: 10.1016/j.jmatprotec.2018.09.002.
  11. Bridgman P.W. Effects of High Shearing Stress Combined with High Hydrostatic Pressure. Physical Review, 1935, vol. 48, pp. 825–847. DOI: 10.1103/PhysRev.48.825.
  12. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 2008, vol. 53, pp. 893–979. DOI: 10.1016/j.pmatsci.2008.03.002.
  13. Glezer A., Kozlov E., Koneva N., Popova N., Kurzina I. Plastic Deformation of Nanostructured Materials, Boca Raton, CRC Press, 2017. DOI: 10.1201/9781315111964.
  14. Teplov V.A., Pilugin V.P., Gaviko V.S., Chernyshov E.G. Non-equilibrium solid solution and nanocrystal structure of Fe–Cu alloy after plastic deformation under pressure. Philosophical Magazine B, 1993, vol. 68, pp. 877–881, DOI: 10.1080/13642819308217944.
  15. Nomura R., Uesugi K. Note: High-pressure in situ x-ray laminography using diamond anvil cell. Review of Scientific Instruments, 2016, vol. 87, pp. 046105. DOI: 1063/1.4948315.
  16. Towle L.C., Riecker R.E. Shear Strength of Grossly Deformed Solids. Science, 1969, vol. 163, pp. 41–47. DOI: 10.1126/science.163.3862.41.
  17. Sundeev R.V., Shalimova A.V., Glezer A.M., Pechina E.A., Gorshenkov M.V., Nosova G.I. In situ observation of the “crystalline⇒amorphous state” phase transformation in Ti2NiCu upon high-pressure torsion. Materials Science and Engineering: A, 2017, vol. 679. pp. 1–6. DOI: 10.1016/j.msea.2016.10.028.
  18. Sundeev R.V., Shalimova A.V., Sitnikov N.N., Chernogorova O.P., Glezer A.M., Presnyakov M.Y., Karateev I.A., Pechina E.A., Shelyakov A.V. Effect of high-pressure torsion on the structure and properties of the natural layered amorphous-crystalline Ti2NiCu composite. Journal of Alloys and Compounds, 2020, vol. 845, pp 156273. DOI: 10.1016/j.jallcom.2020.156273.
  19. Tolmachev T.P., Pilyugin V.P., Ancharov A.I., Chernyshov E. G.,  Patselov A. M. The formation, structure, and properties of the Au–Co alloys produced by severe plastic deformation under pressure. The Physics of Metals and Metallography, 2016, vol. 117, pp. 135–142. DOI: 10.1134/S0031918X16020125.
  20. Tolmachev T.P., Pilyugin V.P., Patselov A.M., Plotnikov A.V., Churbaev R.V. Shear stress in high-pressure torsion and vickers hardness of Au-Co alloys. AIP Conference Proceedings, 2020, vol. 2315, pp. 040046. DOI: 10.1063/5.0036671.
  21. Tolmachev T.P., Pilyugin V.P., Patselov A.M. Solov’eva Yu.V., Churbaev R.V., Plotnikov A.V. Structural features of the Au-Co alloy after mechanical alloying at cryo- and room temperatures according to X-ray diffractometry. Russian Physics Journal, 2021. (In press).

Т. П. Толмачев, В. П. Пилюгин, А. М. Пацелов, Н. В. Николаева, А. М. Власова

ВЛИЯНИЕ БАРИЧЕСКИХ УСЛОВИЙ НА ЗАВИСИМОСТЬ НАПРЯЖЕНИЯ СДВИГА ПРИ КРУЧЕНИИ ПОД ВЫСОКИМ ДАВЛЕНИЕМ В ЖИДКОМ АЗОТЕ СПЛАВОВ СИСТЕМЫ Au-Co

Впервые проведено измерение напряжения сдвига при механическом сплавлении кручением под высоким давлением в условиях криогенной температуры компонентов системы с ограниченной растворимостью золото–кобальт при различных значениях давления обработки, которые составляли около 5, 8, 10 и 12 ГПа. Установлено, что по сравнению с данными, полученными при кручении в условиях комнатной температуры, значения напряжения сдвига выше как на стадии начального интенсивного роста, так и впоследствии – при выходе на насыщение. С повышением давления при низкотемпературном кручении наблюдается соответствующее возрастание сопротивления деформации сдвига на всех этапах обработки. При этом вид кривых при каждом новом давлении изменяется, как изменяется и стадийность деформационной зависимости, что отражает крайнюю неоднородность процессов формирования структуры и фазового состава получаемого сплава. По рентгеновским данным установлено, что в результате низкотемпературной совместной деформации компонентов изучаемой системы формируется преимущественно пересыщенный ГЦК-твердый раствор кобальта на основе золота. Компоненты системы в результате механического сплавления распределены равномерно на поверхности излома сплава.

Благодарность: Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-32-60039 и частично в рамках государственного задания МИНОБРНАУКИ России (тема «Давление», № АААА-А18-118020190104-3). Получение и обработка материалов производились на базе ИФМ УрО РАН, г. Екатеринбург. Электронно-микроскопические исследования проводились на оборудовании ЦКП «Испытательный центр нанотехнологий и перспективных материалов» ИФМ УрО РАН, г. Екатеринбург.

Ключевые слова: механическое сплавление, кручение под высоким давлением, криодеформация, система ограниченной растворимости золото-кобальт, in situ напряжение сдвига от величины деформации

Библиография:

  1. The Au-Co (Gold-Cobalt) system / H. Okamoto, T. B. Massalski, M. Hasebe, T. Nishizawa // Bulletin of Alloy Phase Diagrams. – 1985. – Vol. 6. – P. 449–454. – DOI: 10.1007/BF02869509.
  2. Барабаш О. М., Коваль Ю. Н. Структура и свойства металлов и сплавов. – Киев : Наукова думка, 1986. – 599 с.
  3. Miedema A. R., De Chatel P. F., De Boer F. R. Cohesion in alloys – fundamentals of a semi-empirical model // Physica B. – 1980. – Vol. 100. – P. 1–28. – DOI: 10.1016/0378-4363(80)90054-6.
  4. Свойства элементов : справочник / М. Е. Дриц, П. Б. Будберг, Г. С. Бурханов, А. М. Дриц, В. М. Пановко / под ред. М. Е. Дрица – М. : Металлургия, 1985 – 672 с.
  5. Athermal ω phase transformation from β in Ti-28Ta driven by ultra-rapid quenching / J. Yin, G. Chen, H. Tang, X. Qu // International Journal of Refractory Metals and Hard Materials. – 2020. – Vol. 92. – P. 105250. – DOI: 10.1016/j.ijrmhm.2020.105250.
  6. Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion / X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, J. Chen // Journal of Alloys and Compounds. – 2020. – Vol. 819. – P. 152990. – 10.1016/j.jallcom.2019.152990.
  7. Role of displacement cascades in Ni clustering in a ferritic Fe-3.3 at%Ni model alloy: Comparison of heavy and light particle irradiations / L. T. Belkacemi, E. Meslin, B. Décamps, J.-P. Crocombette, O. Tissot, T. Vandenberghe, P. Desgardin, T. Sauvage, C. Berthier // Scripta Materialia. – 2020. – Vol. 188. – P. 169–173. – DOI: 10.1016/j.scriptamat.2020.07.031.
  8. Formation of a metastable fcc phase and high Mg solubility in the Ti-Mg system by mechanical alloying / A. Tejeda-Ochoa, N. Kametani, C. Carreño-Gallardo, J. E. Ledezma-Sillas, N. Adachi, Y. Todaka, J. M. Herrera-Ramirez // Powder Technology. – 2020. – Vol. 374. – P. 348–352. – DOI: 10.1016/j.powtec.2020.07.053.
  9. Dobromyslov A. V., Taluts N. I., Pilyugin V. P. Severe plastic deformation by high-pressure torsion of Hf and Hf-Ti alloys // International Journal of Refractory Metals and Hard Materials. – 2020. – Vol. 93. – P. 105354. – DOI: 10.1016/j.ijrmhm.2020.105354.
  10. Sun J., Ke Q., Chen W. Material instability under localized severe plastic deformation during high speed turning of titanium alloy Ti-6.5AL-2Zr-1Mo-1V // Journal of Materials Processing Technology. – 2019. – Vol. 264. – P. 119–128. – DOI: 10.1016/j.jmatprotec.2018.09.002.
  11. Bridgman P. W. Effects of High Shearing Stress Combined with High Hydrostatic Pressure // Physical Review. – 1935. – Vol. 48. – P. 825–847. – DOI: 10.1103/PhysRev.48.825.
  12. Zhilyaev A. P., Langdon T. G. Using high-pressure torsion for metal processing: Fundamentals and applications // Progress in Materials Science. – 2008. – Vol. 53. – P. 893– 979. – DOI: 10.1016/j.pmatsci.2008.03.002.
  13. Основы пластической деформации наноструктурных материалов / А. М. Глезер, Э. В. Козлов, Н. А. Конева, Н. А. Попова, И. А. Курзина / под ред. А. М. Глезера. – М. : Физматлит, 2016. – 304 с.
  14. Non-equilibrium solid solution and nanocrystal structure of Fe–Cu alloy after plastic deformation under pressure / V. A. Teplov, V. P. Pilugin, V. S. Gaviko, E. G. Chernyshov // Philosophical Magazine B. – 1993. – Vol. 68. – P. 877–881. – DOI: 10.1080/13642819308217944.
  15. Nomura R., Uesugi K. Note: High-pressure in situ x-ray laminography using diamond anvil cell // Review of Scientific Instruments. – 2016. – Vol. 87. – P. 046105. – DOI: 10.1063/1.4948315.
  16. Towle L. C., Riecker R. E. Shear Strength of Grossly Deformed Solids // Science. – 1969. – Vol. 163. – P. 41–47. – DOI: 10.1126/science.163.3862.41.
  17. In situ observation of the “crystalline⇒amorphous state” phase transformation in Ti2NiCu upon high-pressure torsion / R. V. Sundeev, A. V. Shalimova, A. M. Glezer, E. A. Pechina, M. V. Gorshenkov, G. I. Nosova // Materials Science and Engineering: A. – 2017. – Vol. 679. – P. 1–6. – DOI: 10.1016/j.msea.2016.10.028.
  18. Effect of high-pressure torsion on the structure and properties of the natural layered amorphous-crystalline Ti2NiCu composite / R. V. Sundeev, A. V. Shalimova, N. N. Sitnikov, O. P. Chernogorova, A. M. Glezer, M. Y. Presnyakov, I. A. Karateev, E. A. Pechina, A. V. Shelyakov // Journal of Alloys and Compounds. – 2020. – Vol. 845. – P. 156273. – DOI: 10.1016/j.jallcom.2020.156273.
  19. The formation, structure, and properties of the Au–Co alloys produced by severe plastic deformation under pressure / T. P. Tolmachev, V. P. Pilyugin, A. I. Ancharov, E. G. Chernyshov, A. M. Patselov // The Physics of Metals and Metallography. – 2016. – Vol. 117. – P. 135–142. – DOI: 10.1134/S0031918X16020125.
  20. Shear stress in high-pressure torsion and vickers hardness of Au-Co alloys / T. P. Tolmachev, V. P. Pilyugin, A. M. Patselov, A. V. Plotnikov, R. V. Churbaev // AIP Conference Proceedings. – 2020. – Vol. 2315. – P. 040046. – DOI: 10.1063/5.0036671.
  21. Structural features of the Au-Co alloy after mechanical alloying at cryo- and room temperatures according to X-ray diffractometry / T. P. Tolmachev, V. P. Pilyugin, A. M. Patselov, Yu. V. Solov’eva, R. V. Churbaev, A. V. Plotnikov // Russian Physics Journal. – 2021. – (In press).

PDF      

Библиографическая ссылка на статью

Pressure Dependence of Shear Stress During High-Pressure Torsion of Au-Co Alloys in Liquid Nitrogen / T. P. Tolmachev, V. P. Pilyugin, A. M. Patselov, N. V. Nikolayeva, A. M. Vlasova // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 3. - P. 6-16. -
DOI: 10.17804/2410-9908.2021.3.006-016. -
URL: http://dream-journal.org/issues/2021-3/2021-3_322.html
(accessed: 30.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru