Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 6

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

L. F. Koroleva, L. P. Larionov, M. N. Dobrinskaya

IMPLANTS AND BONE TECHNOLOGY WITH THE USE OF DOPED CALCIUM CARBONATE PHOSPHATES

DOI: 10.17804/2410-9908.2020.6.054-061

The possibility of obtaining an alloplastic biomaterial for the implant based on doped calcium carbonate-phosphates and polycaprolactone is studied. Nanocrystalline calcium carbonate-phosphate doped with cations of iron, magnesium, potassium, zinc, manganese, and silicon intended for bone repair by drug delivery is investigated. Histological studies have revealed that samples after 60 days in a living organism are covered by a connective tissue capsule. The formation of blood vessels and nerve endings is observed in the capsule.

Keywords: biocompatible materials, dopes, calcium carbonate-phosphate, implant, osteogenesis, bone and dental tissues

References:

  1. Hench L.L. Bioceramics. Journal of the American Ceramic Society, 1998, vol. 81 (7), pp. 1705–1728. DOI: 10.1111/j.1151-2916.1998.tb02540.x.
  2. Hench L.L. Chronology of bioactive glass development and clinical applications. New Journal of Glass and Ceramics, 2013, vol. 3, pp. 67–73. DOI: 10.4236/njgc.2013.32011.
  3. Suchanek W., Yashimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 1998, vol. 13, iss. 1, pp. 94–117. DOI: https://doi.org/10.1557/JMR.1998.0015.
  4. Azizeh-Mitra Yousefi, Hassane Oudadesse, Rosa Akbarzadeh, Eric Wers and Anita Lucas-Girot. Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnol. Rev., 2014, vol. 3 (6), pp. 527–552. DOI: 10.1515/ntrev-2014-0013.
  5. Wang H., Zuo Y., Zou Q., Cheng L., Huang D., Wang L., Li Yu. Nano-hydroxyapatite/polyamide66 composite tissue-engineering scaffolds with anisotropy in morphology and mechanical behaviors. J. Polym. Sci. Part A: Polym. Chem., 2009, vol. 47, iss. 3, pp. 658–669. DOI: 10.1002/pola.23171.
  6. Okamoto M., John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 2013, vol. 38, pp. 1487–1503. DOI: 10.1016/j.progpolymsci.2013.06.001.
  7. Shamray V.F., Sirotinkin V.P., Smirnov I.V., Kalita V.I., Fedotov A.Yu., Barinov S.M., Komlev V.S. Structure of the hydroxyapatite plasma-sprayed coatings deposited on preheated titanium substrates. Ceramics International, 2017, 43, pp. 9105–9109. DOI: 10.1016/j.ceramint.
  8. Shapiro Jenna M., and Oyen Michelle L. Hydrogel Composite Materials for Tissue Engineering Scaffolds.  JOM: the Journal of the Minerals, Metals & Materials Society, 2013, vol. 65 (4), pp. 505–517. DOI: 10.1007/s11837-013-0575-6.
  9. Kalita V.I., Mamaev A.I., Mamaeva V.A., Malanin D.A., Komlev D.I., Gnedovets A.G., Novochadov V.V., Komlev V.S., and Radyuk A.A. Structure and shear strength of implants with plasma coatings. Inorganic Materials: Applied Research, 2016, vol. 7, no. 3, pp. 376–387. DOI: 10.1134/S2075113316030102.
  10. Poinern Gérrard Eddy Jai, Brundavanam Sridevi, Fawcett Derek. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2012, 2 (6), pp. 218–240. DOI: 10.5923/j.ajbe.20120206.02.
  11. Sadeghzade Sorour, Emadi Rahmatollah, Tavangarian Fariborz, Naderi Mozhgan. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications. Materials Science and Engineering C, 2017, 71, pp. 431–438. DOI: 10.1016/j.msec.2016.10.042 .
  12. Koroleva L.F. Nanocrystalline Doped Calcium Carbonate-Phosphates as a Biomaterial for Osteogenesis. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, 5 (6), pp. 704–710.
  13. Savelyeva Maria S.,  Abalymov Anatoly A.,  Lyubun German P.,  Vidyasheva Irina V., Yashchenok Alexey M.,  Douglas Timothy E. L.,  Gorin Dmitry A.,  Parakhonskiy Bogdan V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. Journal of Biomedical Materials Research: Part. A., 2017, vol. 105, iss. 1, pp. 94–103. DOI: 10.1002/jbm.a.35870 .
  14. Koroleva L. F. Doped Nanocrystalline Calcium Carbonate Phosphates. Inorganic Materials, 2010, vol. 46, no. 4, pp. 405–411. DOI: 10.1134/S0020168510040151.
  15. Koroleva L.F. An Oscillating Mechanism in the Synthesis of Doped Nanocrystalline Calcium Carbonate Phosphates. Nanotechnologies in Russia, 2010, vol. 5, nos. 9–10, pp. 635–640. DOI: 10.1134/S1995078010090077.
  16. Koroleva L.F., Larionov L.P., Gorbunova N.P. Doped Calcium Carbonate-Phosphate- Based Biomaterial for Active Osteogenesis. In: Osteogenesis, Yunfeng Lin (ed.), ch. 5, InTech, 2012, pp. 117–134. ISBN 978-953-51-0030-0. Available from: http://www.intechopen.com/books/osteogenesis/doped-calcium-carbonate-phosphatebased-biomaterial-for-active-osteogenesis
  17. Koroleva L.F., Larionov L.P., Gorbunova N.P. Biomaterial based on doped calcium carbonate-phosphate for Active Osteogenesis. Journal of Biomaterials and Nanobiotechnology, 2012, no. 3, pp. 226–237. – DOI:10.4236/jbnb.2012.32028.
  18. Koroleva L.F., Cherednichenko N.V., Dobrinskaya M.N. Doped Nanocrystalline Calcium Carbonate- Phosphate-Biomaterial with Transdermal Activity for Osteogenesis, ch. 9, pp. 231–247. In: Naveen Navani Kumar and Sinha Shishir, Nanotechnology, vol. 11: Biomaterials, STUDIUM PRESS LLC. USA-India, 2013, 484 p.  ISBN: 1-626990-11-5.
  19. Koroleva L.F. Dobrinskaya M.N. Kamantsev I.S. Doped calcium carbonate-phosphate used for bone tissue technology. Integrative Clinical Medicine, 2017, vol. 1 (2), pp. 1–7. DOI: 10.15761/ICM.1000108. ISSN: 2515-0219.
  20. Koroleva L.F. Oscillating reactions in the synthesis of doped nanocrystalline calcium carbonate phosphates of transdermal ability. Biointerface Research in Applied Chemistry, 2014, vol. 4, iss. 6, pp. 1–4. ISSN 2069-5837.
  21. Koroleva L.F., Dobrinskaya M.N., Kamantsev I.S. Doped nanocrystalline calcium carbonate-phosphate – a biomaterial for bone repair and strengthening by drug delivery. Diagnostics, Resource and Mechanics of materials and structure, 2015, iss. 5, pp. 147–152.  DOI: 10.17804/2410-9908.2015.5.147-157. Available at: http://dream-journal.org/issues/2015-5/2015-5_40.html

Л. Ф. Королева, Л. П. Ларионов, М. Н. Добринская

ИМПЛАНТЫ И КОСТНЫЕ ТЕХНОЛОГИИ С ИСПОЛЬЗОВАНИЕМ ДОПИРОВАННЫХ КАРБОНАТ-ФОСФАТОВ КАЛЬЦИЯ

Изучена возможность получения аллопластического биоматериала для имплантата на основе допированных карбонат-фосфатов кальция и поликапролактона. Исследован нанокристаллический карбонат-фосфат кальция с добавками катионов железа, магния, калия, цинка, марганца, кремния, предназначенный для восстановления костной ткани путем доставки лекарственных препаратов. Гистологические исследования показали, что образцы после 60 дней в живом организме покрывались капсулой из соединительной ткани. В этой капсуле отмечалось образование кровеносных сосудов и нервных окончаний

Ключевые слова: биосовместимые материалы, допирование, карбонат - фосфат кальция, имплантат, остеогенез, костные и стоматологические ткани

Библиография:

  1. Hench L. L. Bioceramics // Journal of the American Ceramic Society. – 1998. – Vol. 81 (7). – P. 1705–1728. – DOI: 10.1111/j.1151-2916.1998.tb02540.x.
  2. Hench L. L. Chronology of bioactive glass development and clinical applications // New Journal of Glass and Ceramics. – 2013. – Vol. 3. – P. 67–73. – DOI: 10.4236/njgc.2013.32011.
  3. Suchanek W., Yashimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants // Journal of Materials Research. – 1998. – Vol. 13, iss. 1. – P. 94–117. – DOI: 10.1557/JMR.1998.0015.
  4. Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering / Azizeh-Mitra Yousefi, Hassane Oudadesse, Rosa Akbarzadeh, Eric Wers and Anita Lucas-Girot // Nanotechnol. Rev. – 2014. – Vol. 3 (6). – P. 527–552. – DOI: 10.1515/ntrev-2014-0013.
  5. Nano-hydroxyapatite/polyamide66 composite tissue-engineering scaffolds with anisotropy in morphology and mechanical behaviors / Huanan Wang,  Yi Zuo,  Qin Zou,  Lin Cheng,  Di Huang,  Li Wang,  Yubao Li // J. Polym. Sci. Part A: Polym. Chem. – 2009. – Vol. 47, iss. 3. – P. 658–669. – DOI: 10.1002/pola.23171.
  6. Okamoto M., John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds // Progress in Polymer Science. – 2013. – Vol. 38. – P. 1487–1503. – DOI: 10.1016/j.progpolymsci.2013.06.001.
  7. Structure of the hydroxyapatite plasma-sprayed coatings deposited on preheated titanium substrates / V. F. Shamray, V. P. Sirotinkin, I. V. Smirnov, V. I. Kalita, A. Yu. Fedotov, S. M. Barinov, V. S. Komlev // Ceramics International. – 2017. – Vol. 43. – P. 9105–9109. – DOI: 10.1016/j.ceramint.
  8. Shapiro Jenna M., and Oyen Michelle L. Hydrogel Composite Materials for Tissue Engineering Scaffolds // JOM: the Journal of the Minerals, Metals & Materials Society. – 2013. – Vol. 65 (4). – P. 505–517. – DOI: 10.1007/s11837-013-0575-6.
  9. Structure and shear strength of implants with plasma coatings / V. I. Kalita, A. I. Mamaev, V. A. Mamaeva, D. A. Malanin, D. I. Komlev, A. G. Gnedovets, V. V. Novochadov, V. S. Komlev, and A. A. Radyuk // Inorganic Materials: Applied Research. – 2016. – Vol. 7, no. 3. – P. 376–387. – DOI: 10.5923/j.ajbe.20120206.02.
  10. Gérrard Eddy Jai Poinern, Sridevi Brundavanam, Derek Fawcett. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant // American Journal of Biomedical Engineering. –  2012. – Vol. 2 (6). – P. 218–240. – DOI: 10.5923/j.ajbe.20120206.02.
  11. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications / Sorour Sadeghzade, Rahmatollah Emadi, Fariborz Tavangarian, Mozhgan Naderi // Materials Science and Engineering C. – 2017. – Vol. 71. – P. 431–438. – DOI: 10.1016/j.msec.2016.10.042 .
  12. Koroleva L. F. Nanocrystalline Doped Calcium Carbonate-Phosphates as a Biomaterial for Osteogenesis // Research Journal of Pharmaceutical, Biological and Chemical Sciences. – 2014. – Vol. 5 (6). – P. 704-710.
  13. Vaterite coatings on electrospun polymeric fibers for biomedical applications / Maria S. Savelyeva,  Anatoly A. Abalymov,  German P. Lyubun,  Irina V. Vidyasheva, Alexey M. Yashchenok,  Timothy E. L. Douglas,  Dmitry A. Gorin,  Bogdan V. Parakhonskiy // Journal of Biomedical Materials Research: Part. A. – 2017. – Vol. 105, iss. 1. – P. 94–103. – DOI:  10.1002/jbm.a.35870.
  14. Koroleva L. F. Doped Nanocrystalline Calcium Carbonate Phosphates // Inorganic Materials. – 2010, vol. 46, no. 4. – P. 405–411. – DOI: 10.1134/S0020168510040151.
  15. Koroleva L. F. An Oscillating Mechanism in the Synthesis of Doped Nanocrystalline Calcium Carbonate Phosphates // Nanotechnologies in Russia. – 2010. – Vol. 5, nos. 9–10. – P. 635–640. – DOI: 10.1134/S1995078010090077.
  16. Koroleva L. F., Larionov L. P., Gorbunova N. P. Doped Calcium Carbonate-Phosphate- Based Biomaterial for Active Osteogenesis // Osteogenesis / Yunfeng Lin (ed.). – InTech, 2012. – 296 p. – ISBN 978-953-51-0030-0. – Ch. 5. – P. 117–134. – Available from: http://www.intechopen.com/books/osteogenesis/doped-calcium-carbonate-phosphatebased-biomaterial-for-active-osteogenesis
  17. Koroleva L. F., Larionov L. P., Gorbunova N. P. Biomaterial based on doped calcium carbonate-phosphate for Active Osteogenesis // Journal of Biomaterials and Nanobiotechnology. – 2012. – No. 3. – P. 226–237. – DOI:10.4236/jbnb.2012.32028.
  18. Koroleva L. F., Cherednichenko N. V., Dobrinskaya M. N. Doped Nanocrystalline Calcium Carbonate- Phosphate-Biomaterial with Transdermal Activity for Osteogenesis // Naveen Kumar Navani and Shishir Sinha. Nanotechnology. Vol. 11: Biomaterials. –  USA-India, STUDIUM PRESS LLC, 2013. – ISBN: 1-626990-11-5. – 484 p. – Ch. 9. – P. 231–247.
  19. Koroleva L. F., Dobrinskaya M. N., Kamantsev I. S. Doped calcium carbonate-phosphate used for bone tissue technology // Integrative Clinical Medicine. – 2017. – Vol. 1 (2). – P. 1–7. – DOI: 10.15761/ICM.1000108. – ISSN: 2515-0219.
  20. Koroleva L. F. Oscillating reactions in the synthesis of doped nanocrystalline calcium carbonate phosphates of transdermal ability // Biointerface Research in Applied Chemistry. – 2014. – Vol. 4, iss. 6. – P. 1–4. – ISSN 2069-5837.
  21. Koroleva L. F., Dobrinskaya M. N., Kamantsev I. S. Doped nanocrystalline calcium carbonate-phosphate – a biomaterial for bone repair and strengthening by drug delivery // Diagnostics, Resource and Mechanics of materials and structure. – 2015. – Iss. 5. – P. 147–152. – DOI: 10.17804/2410-9908.2015.5.147-157. – URL: http://dream-journal.org/issues/2015-5/2015-5_40.html


PDF      

Библиографическая ссылка на статью

Koroleva L. F., Larionov L. P., Dobrinskaya M. N. Implants and Bone Technology with the Use of Doped Calcium Carbonate Phosphates // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 6. - P. 54-61. -
DOI: 10.17804/2410-9908.2020.6.054-061. -
URL: http://dream-journal.org/issues/2020-6/2020-6_308.html
(accessed: 21.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru