Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 5

2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. L. Kazakov, L. F. Spevak, E. L. Spevak

ON NUMERICAL METHODS FOR CONSTRUCTING BENCHMARK SOLUTIONS TO A NONLINEAR HEAT EQUATION WITH A SINGULARITY

The paper deals with the construction of exact solutions to a nonlinear heat equation with degeneration in the case of the zero value of the required function. Generically self-similar solutions and traveling wave solutions are considered, the construction of which reduces to solving Cauchy problems for a nonlinear second-order ordinary differential equation with a singularity before the higher derivative. Two approaches are proposed to solve the Cauchy problems: the analytical solution by the power series method and the numerical solution by the boundary element method on a specified segment. A complex computational experiment is carried out to compare the above two methods with each other and with the finite difference methods, namely the Euler method and the fourth-order Runge-Kutta method. Power series segments are used on the first step of the finite difference solutions in order to resolve the singularity. The comparison of the application domains, the accuracy of the solutions and their dependence on the parameters of a certain problem shows that the boundary element method is the most universal, although not the most accurate for some particular examples. The conclusions drawn allow us to construct benchmark solutions to verify the approximate solutions of the nonlinear heat equation by various methods in a wide range of parameter values.

Acknowledgements: The work was supported by the RFBR, project No. 20-07-00407.

Keywords: nonlinear heat equation, exact solution, generically self-similar solution, traveling wave, power se-ries, boundary element method

Bibliography:

  1. Vazquez J.L. The Porous Medium Equation: Mathematical Theory, Oxford, Clarendon Press, 2007, 648 р. ISBN-10: 0198569033, ISBN-13: 978-019856903.
  2. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Blow-up in Quasilinear Parabolic Equations, NY, Berlin, Walter de Gruyte, 1995, 534 p. ISBN 3-11-012754-7.
  3. Zel'dovich Ya.B., Kompaneets A.S. Towards a theory of heat conduction with thermal conductivity depending on the temperature. In: Collection of Papers Dedicated to 70th Anniversary of A.F. Ioffe, Moscow, Akad. Nauk SSSR Publ., 1950, pp. 61–71. (In Russian).
  4. Barenblatt G.I., Vishik I.M. On the Final Velocity of Propagation in Problems of Non-stationary Filtration of Liquid and Gas. Prikladnaya matematika i mekhanika, 1956, vol. 20, no. 3, pp. 411–417. (In Russian).
  5. Oleynik O.A., Kalashnikov A.S. Chzhou Yuy-Lin. The Cauchy Problem and Boundary Value Problems for Equations of the type of Non-stationary Filtration. Izvestiya AN SSSR. Seriya Matematicheskaya, 1958, vol. 22, no. 5, pp. 667–704. (In Russian).
  6. Sidorov A.F. In: Izbrannye Trudy: Matematika. Mekhanika [Selected Works: Mathematics. Mechanics]. Moscow, Fizmatlit Publ., 2001, 576 p. (In Russian). ISBN 5-9221-0103-Х.
  7. Kazakov A.L., Lempert A.A. Analytical and Numerical Studies of the Boundary Value Problem of a Nonlinear Filtration with Degeneration. Vychislitelnye tekhnologii, 2012, vol. 17, no. 1, pp. 57–68. (In Russian).
  8. Kazakov A.L., Spevak L.F. Boundary Elements Method and Power Series Method for One-dimensional Nonlinear Filtration Problems. Izvestiya IGU. Seriya Matematika [The Bulletin of Irkutsk State University. Series Mathematics], 2012, vol. 5, no. 2, pp. 2–17. (In Russian).
  9. Kazakov A.L., Spevak L.F. Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form. Applied Mathematical Modelling, 2013, vol. 37, iss. 10–11, pp. 6918–6928. DOI: 10.1016/j.apm.2013.02.026.
  10. Kazakov A.L., Kuznetsov P.A., Spevak L.F. On a Degenerate Boundary Value Problem for the Porous Medium Equation in Spherical Coordinates. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, vol. 20, no. 1, pp. 119–129. (In Russian).
  11. Kazakov A.L., Spevak L.F. An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry. Applied Mathematical Modelling, 2015, vol. 40, iss. 2, pp. 1333–1343. DOI: 10.1016/j.apm.2015.06.038.
  12. Spevak L.F., Kazakov A.L. Constructing numerical solutions to a nonlinear heat conduction equation with boundary conditions degenerating at the initial moment of time. In: AIP Conference Proceedings, 2016, vol. 1785, iss. 1, pp. 040076. DOI: 10.1063/1.4967136
  13. Kazakov A.L., Kuznetsov P.A., Spevak L.F. A heat wave problem for a degenerate nonlinear parabolic equation with a specified source function. In: AIP Conference Proceedings, 2018, vol. 2053, pp. 030024. Available at: https://doi.org/10.1063/1.5084385
  14. Kazakov A.L., Nefedova O.A., Spevak L.F. Solution of the Problem of Initiating the Heat Wave for a Nonlinear Heat Conduction Equation Using the Boundary Element Method. Computational Mathematics and Mathematical Physics, 2019, vol. 59, no. 6, pp. 1015–1029. DOI: 10.1134/S0965542519060083.
  15. Kazakov A.L. On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation. Sibirskiye Elektronnye Matematicheskiye Izvestiya [Siberian Electronic Mathematical Reports], 2019, vol. 16, pp. 1057–1068. (In Russian). DOI: 10.33048/semi.2019.16.073. Available at: http://semr.math.nsc.ru/v16/p1057-1068.pdf
  16. Spevak L.F., Kazakov A.L. Solving a degenerate nonlinear parabolic equation with a specified source function by the boundary element method. In: AIP Conference Proceedings, 2017, vol. 1915, pp. 040054. Available at: https://doi.org/10.1063/1.5017402
  17. Kazakov A.L., Spevak L.F., Nefedova O.A. On the Numerical-Analytical Approaches to Solving a Nonlinear Heat Conduction Equation with a Singularity. Diagnostics, Resource and Mechanics of materials and structures, 2018, iss. 6, pp. 100–116. DOI: 10.17804/2410-9908.2018.6.100-116. Available at: http://dream-journal.org/issues/2018-6/2018-6_232.html
  18. Banerjee P.К., Butterheld R. Boundary element methods in engineering science, US, McGraw-Hill Inc., 1981, 452 р. ISBN-10: 0070841209, ISBN-13: 978-0070841208.
  19. Nardini D., Brebbia C.A. A New Approach to Free Vibration Analysis using Boundary Elements. Applied Mathematical Modelling, 1983, vol. 7, no. 3, pp. 157–162. DOI: 10.1016/0307-904X(83)90003-3.
  20. Wrobel L.C., Brebbia C.A. Nardini D. The dual reciprocity boundary element formulation for transient heat conduction. In: Finite elements in water resources VI, Springer-Verlag, Berlin, Germany, 1986, pp. 801–811.
  21. Tanaka M., Matsumoto T., Yang Q.F. Time-stepping boundary element method applied to 2-D transient heat conduction problems. Applied Mathematical Modelling, 1994, vol. 18, pp. 569–576. DOI: 10.1016/0307-904X(94)90142-2.
  22. Tanaka M., Matsumoto T., Takakuwa S. Dual reciprocity BEM for time-stepping approach to the transient heat conduction problem in nonlinear materials. Computer Methods in Applied Mechanics and Engineering, 2006, vol. 195, pp. 4953–4961. DOI: 10.1016/j.cma.2005.04.025.
  23. Divo E., Kassab A.J. Transient non-linear heat conduction solution by a dual reciprocity boundary element method with an effective posteriori error estimator. Computers, Materials and Continua, 2005, vol. 2, pp. 277–288. DOI: 10.3970/cmc.2005.002.277.
  24. Wrobel L.C., Brebbia C.A. The dual reciprocity boundary element formulation for nonlinear diffusion problems. Computer Methods in Applied Mechanics and Engineering, 1987, vol. 65, pp. 147–164. DOI: 10.1016/0045-7825(87)90010-7.
  25. Singh K.M., Tanaka M. Dual reciprocity boundary element analysis of transient advection-diffusion. International Journal of Numerical Methods for Heat & Fluid Flow, 2003, vol. 13, pp. 633–646. DOI: 10.1108/09615530310482481.
  26. Al-Bayati S.A., Wrobel L.C. A novel dual reciprocity boundary element formulation for two-dimensional transient convection–diffusion–reaction problems with variable velocity. Engineering Analysis with Boundary Elements, 2018, vol. 94, pp. 60–68. DOI: 10.1016/j.enganabound.2018.06.001.
  27. Fendoglu H., Bozkaya C., Tezer-Sezgin M. DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations. Engineering Analysis with Boundary Elements, 2018, vol. 93, pp. 124–134. DOI: 10.1016/j.enganabound.2018.04.011.
  28. Powell M.J.D. The Theory of Radial Basis Function Approximation. In: W. Light, ed. Advances in Numerical Analysis, Oxford Science Publications, Oxford, UK, 1992, vol. 2.
  29. Golberg M.A., Chen C.S., Bowman H. Some recent results and proposals for the use of radial basis functions in the BEM. Engineering Analysis with Boundary Elements, 1999, vol. 23, pp. 285–296. DOI: 10.1016/S0955-7997(98)00087-3.
  30. Kazakov A.L., Kuznetsov P.A., Spevak L.F. Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source. Journal of Mathematical Sciences, 2019, vol. 239, no. 2, pp. 111–122. DOI 10.1007/s10958-019-04294-x.
  31. Kazakov A.L., Spevak L.F. Numerical Study of Travelling Wave Type Solutions for the Nonlinear Heat Equation. In: AIP Conference Proceedings, 2019, vol. 2176, pp. 030006. DOI: 10.1063/1.5135130.
  32. Polyanin A.D., Zaytsev V.F., Zhurov A.I. Nelineynye uravneniya matematicheskoy fiziki i mekhaniki. Metody resheniya [A Nonlinear Equations of Mathematical Physics and Mechanics. Solution Methods]. Moscow, Yurayt Publ., 2017, 256 p. (In Russian). ISBN 978-5-534-02317-6.

А. Л. Казаков, Л. Ф. Спевак, Е. Л. Спевак

О ЧИСЛЕННЫХ МЕТОДАХ ПОСТРОЕНИЯ ЭТАЛОННЫХ РЕШЕНИЙДЛЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ С ОСОБЕННОСТЬЮ

Работа посвящена построению точных решений нелинейного уравнения теплопроводности с вырождением в случае нулевого значения искомой функции. Рассмотрены обобщенно-автомодельные решения и решения типа бегущей волны, нахождение которых сводится к решению задач Коши для обыкновенного дифференциального уравнения второго порядка с особенностью при старшей производной. Для решения этих задач предложены два подхода: построение аналитического решения методом степенных рядов и построение решения на заданном отрезке методом граничных элементов. В проведенном объемном вычислительном эксперименте построенные двумя методами решения сравнивались между собой, а также с разностными решениями методами Эйлера и Рунге–Кутта, в которых для раскрытия особенностей на первом шаге используются отрезки степенных рядов. Сопоставление областей применимости методов, точности решений и их зависимости от параметров конкретной задачи показало набольшую универсальность метода граничных элементов, хотя для отдельных примеров лучшую точность имели решения другими методами. Сделанные выводы позволят с достаточной корректностью строить эталонные решения для верификации приближенных решений нелинейного уравнения теплопроводности различными методами в широком диапазоне значений параметров.

Благодарности: Работа выполнена при поддержке РФФИ, проект № 20-07-00407.

Ключевые слова: нелинейное уравнение теплопроводности, точное решение, обобщенно-автомодельное решение, бегущая волна, степенной ряд, метод граничных элементов

Библиография:

1. Vazquez J. L. The Porous Medium Equation: Mathematical Theory. – Oxford: Clarendon Press, 2007. – 648 р. – ISBN-10: 0198569033, ISBN-13: 978-019856903.

2. Режимы с обострением в задачах для нелинейных параболических уравнений / А. А. Самарский, В. А. Галактионов, С. П. Курдюмов, А. П. Михайлов – М. : Наука, 1987. – 476 с.

3. Зельдович Я. Б., Компанеец А. С. К теории распространения тепла при теплопроводности, зависящей от температуры // В кн.: Сборник, посвященный 70-летию академика А. Ф. Иоффе. – М. : Изд-во АН СССР, 1950. – С. 61–71.

4. Баренблатт Г. И., Вишик И. М. О конечной скорости распространения в задачах нестационарной фильтрации жидкости и газа // Прикладная математика и механика. – 1956. – Т. 20, вып. 3. – С. 411–417.

5. Олейник О. А., Калашников А. С., Чжоу Юй-Линь. Задача Коши и краевые задачи для уравнений типа нестационарной фильтрации // Известия АН СССР. Серия математическая. – 1958. – Т. 22, вып. 5. – С. 667–704.

6. Сидоров А. Ф. Избранные труды: Математика. Механика. – М. : Физматлит, 2001. – 576 c. – ISBN 5-9221-0103-Х.

7. Казаков А. Л., Лемперт А. А. Аналитическое и численное исследование одной краевой задачи нелинейной фильтрации с вырождением // Вычислительные технологии. – 2012. – Т. 17. – № 1. – С. 57–68.

8. Казаков А. Л., Спевак Л. Ф. Методы граничных элементов и степенных рядов в одномерных задачах нелинейной фильтрации // Известия ИГУ. Серия Математика. – 2012. – Т. 5. – № 2. – С. 2–17.

9. Kazakov A. L., Spevak L. F. Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form // Applied Mathematical Modelling. – 2013. – Vol. 37, iss. 10–11. – P. 6918–6928. – DOI: 10.1016/j.apm.2013.02.026

10. Казаков А. Л., Кузнецов П. А., Спевак Л. Ф. Об одной краевой задаче с вырождением для нелинейного уравнения теплопроводности в сферических координатах // Труды института математики и механики УрО РАН. – 2014. – Т. 20. – № 1. – С. 119-129.

11. Kazakov A. L., Spevak L. F. An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry // Applied Mathematical Modelling. – 2016. – Vol. 40, iss. 2. – P. 1333–1343. – DOI: 10.1016/j.apm.2015.06.038

12. Spevak L. F., Kazakov A. L. Constructing numerical solutions to a nonlinear heat conduction equation with boundary conditions degenerating at the initial moment of time // AIP Conference Proceedings. – 2016. – Vol. 1785, iss. 1. – P. 040076. – URL: http://doi.org/10.1063/1.4967133.

13. Kazakov A. L., Kuznetsov P. A., Spevak L. F. A heat wave problem for a degenerate nonlinear parabolic equation with a specified source function // AIP Conference Proceedings. – 2018. – Vol. 2053. – P. 030024. – https://doi.org/10.1063/1.5084385.

14. Казаков А. Л., Нефедова О. А., Спевак Л. Ф. Решение задач об инициировании тепловой волны для нелинейного уравнения теплопроводности методом граничных элементов // Журнал вычислительной математики и математической физики. – 2019. – Т. 59. – № 6. – С. 1047–1062. – DOI: 10.1134/S0044466919060085.

15. Казаков А. Л. О точных решениях краевой задачи о движении тепловой волны для уравнения нелинейной теплопроводности // Сибирские электронные математические известия. – 2019. – Т. 16. – С 1057–1068. – http://semr.math.nsc.ru/v16.

16. Spevak L. F., Kazakov A. L. Solving a degenerate nonlinear parabolic equation with a specified source function by the boundary element method // AIP Conference Proceedings. – 2017. – Vol. 1915. – P. 040054. – https://doi.org/10.1063/1.5017402.

17. Kazakov A. L., Spevak L. F., Nefedova O. A. On the Numerical-Analytical Approaches to Solving a Nonlinear Heat Conduction Equation with a Singularity [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. – 2018. – Iss. 6. – P. 100–116. – DOI: 10.17804/2410-9908.2018.6.100-116.

18. Banerjee P. К., Butterheld R. Boundary element methods in engineering science. – US : McGraw-Hill Inc., 1981. – 452 р. ISBN-10: 0070841209, ISBN-13: 978-0070841208.

19. Nardini D., Brebbia C. A. A New Approach to Free Vibration Analysis using Boundary Elements // Applied Mathematical Modelling. – 1983. – Vol. 7, no. 3. – P. 157–162. – DOI: 10.1016/0307-904X(83)90003-3.

20. Wrobel L. C., Brebbia C. A. Nardini D. The dual reciprocity boundary element formulation for transient heat conduction // In: Finite elements in water resources VI. Springer-Verlag: Berlin, Germany, 1986. – P. 801–811.

21. Tanaka M., Matsumoto T., Yang Q. F. Time-stepping boundary element method applied to 2-D transient heat conduction problems // Applied Mathematical Modelling. – 1994. – Vol. 18. – P. 569–576. – https://doi.org/10.1016/0307-904X(94)90142-2.

22. Tanaka M., Matsumoto T., Takakuwa S. Dual reciprocity BEM for time-stepping approach to the transient heat conduction problem in nonlinear materials // Computer Methods in Applied Mechanics and Engineering. – 2006. – Vol. 195. – P. 4953–4961. – https://doi.org/10.1016/j.cma.2005.04.025.

23. Divo E., Kassab A. J. Transient non-linear heat conduction solution by a dual reciprocity boundary element method with an effective posteriori error estimator // Computers, Materials and Continua. – 2005. – Vol. 2. – P. 277–288. https://doi.org/10.3970/cmc.2005.002.277.

24. Wrobel L. C., Brebbia C. A. The dual reciprocity boundary element formulation for nonlinear diffusion problems // Computer Methods in Applied Mechanics and Engineering. – 1987. – Vol. 65 – P. 147–164. – https://doi.org/10.1016/0045-7825(87)90010-7.

25. Singh K. M., Tanaka M. Dual reciprocity boundary element analysis of transient advection-diffusion // International Journal of Numerical Methods for Heat & Fluid Flow. – 2003. – Vol. 13. – P. 633–646. – https://doi.org/10.1108/09615530310482481.

26. AL-Bayati S. A., Wrobel L. C. A novel dual reciprocity boundary element formulation for two-dimensional transient convection–diffusion–reaction problems with variable velocity // Engineering Analysis with Boundary Elements. – 2018. – Vol 94. – P. 60–68. – https://doi.org/10.1016/j.enganabound.2018.06.001.

27. Fendoglu H., Bozkaya C., Tezer-Sezgin M. DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations // Engineering Analysis with Boundary Elements. – 2018. – Vol. 93. – P. 124–134. – https://doi.org/10.1016/j.enganabound.2018.04.011.

28. Powell M. J. D. The Theory of Radial Basis Function Approximation // In: Light W., ed.. Advances in Numerical Analysis, Oxford Science Publications: Oxford, UK, 1992. – Vol. 2.

29. Golberg M. A., Chen C. S.. Bowman H. Some recent results and proposals for the use of radial basis functions in the BEM // Engineering Analysis with Boundary Elements. – 1999. – Vol 23. – P. 285–296. – https://doi.org/10.1016/S0955-7997(98)00087-3.

30. Kazakov A. L., Kuznetsov P. A., Spevak L. F. Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source // Journal of Mathematical Sciences. – 2019. – Vol. 239. – No. 2. – P. 111–122. – DOI 10.1007/s10958-019-04294-x.

31. Kazakov A. L., Spevak L. F. Numerical Study of Travelling Wave Type Solutions for the Nonlinear Heat Equation // AIP Conference Proceedings. – 2019. – Vol. 2176. – P. 030006. – DOI: 10.1063/1.5135130.

32. Полянин А. Д., Зайцев В. Ф., Журов А. И. Нелинейные уравнения математической физики и механики. Методы решения. – М.: Изд-во Юрайт, 2017. – 256 с. – ISBN 978-5-534-02317-6.


PDF        

 

импакт-фактор
РИНЦ 0.42

 

МРДМК 2020

МРДМК 2019
МРДМК 2019

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
И.о. главного редактора:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2021, www.imach.uran.ru