Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 4

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

I. S. Kamantsev, Yu. N. Loginov, S. V. Belikov, S. I. Stepanov, M. S. Karabanalov, A. I. Golodnov

FRACTURE BEHAVIOR OF CELLULAR STRUCTURES OBTAINED BY SELECTIVE LASER MELTING

DOI: 10.17804/2410-9908.2020.4.035-047

An example of samples with a cellular architecture, obtained by selective laser melting,
is used to study the influence of the building direction of cellular objects on the characteristics of fracture under cyclic loading. The origin of their fracture has been revealed. The mechanism providing increased fatigue fracture resistance of objects which, along with the cellular structure, have anisotropy of properties due to the technological features of their production has been determined.

Acknowledgement: This work was partially supported within the framework of the event “Creation and Func-tioning of a Network of International Scientific and Methodological Centers for the Expansion of the Best International Practices of Training, Retraining, and Internship of Advanced Digital Economy Personnel in the Fields of Mathematics, Informatics, and Technology” (Agreement No. 075-15-2019- 1907 dated 09.12.2019) and in accordance with the research plan for the IES UB RAS, theme AAAA-A18-118020790145-0. The equipment installed in the Plastometriya collective use center, IES UB RAS, was used in the experimental investigation.

Keywords: selective laser melting, cellular structures, high-cycle fatigue, fracture

References:

  1. Soro N., Attar H., Wu X., Dargusch M.S. Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell. Materials Science and Engineering A, A 745, 2019, pp. 195–202. DOI: 10.1016/j.msea.2018.12.104.
  2. Golodnov A.I., Loginov Y.N., Stepanov S.I. Numeric loading simulation of titanium implant manufactured using 3d printing. Solid State Phenomena, vol. 284 SSP, 2018, pp. 380–385. DOI: 10.4028/www.scientific.net/SSP.284.380.
  3. Popov V.V., Muller-Kamskii G., Kovalevsky A., Kolomiets A., Ramon J. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical Engineering Letters, 2018, 8 (4), pp. 337–344. DOI: 10.1007/s13534-018-0080-5.
  4. Van Hengel I.A.J., Gelderman F.S.A., Athanasiadis S., Minneboo M., Weinans H., Fluit A.C., Van der Eerden B.C.J., Fratila-Apachitei L.E., Apachitei I., Zadpoor A.A. Functionality-packed additively manufactured porous titanium implants. Materials Today Bio, 2020, vol. 7. DOI: 10.1016/j.mtbio.2020.100060.
  5. De Jonge C.P., Kolken H.M.A., Zadpoor A.A. Non-Auxetic Mechanical Metamaterials. Materials, 2019, 12 (4), 635. DOI: 10.3390/ma12040635.
  6. Kilina P.N., Drozdov A.A., Sirotenko L.D. Formation samples with cellular structures by selective laser sintering of metal powders. Metalloobrabotka, 2015, no. 3 (87), pp. 29–31. (In Russian).
  7. Cutolo A., Engelen B., Desmet W., Van Hooreweder B. Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: on the effect of the load direction. Journal of the Mechanical Behavior of Biomedical Materials, 2020, vol. 104, pp. 103656 (1–15). DOI: 10.1016/j.jmbbm.2020.103656.
  8. Kazantseva N.V., Ezhov I.V., Vinogradova N.I., Il’inykh M.V., Fefelov A.S., Davydov D.I., Oleneva O.A. & Karabanalov M.S. Effect of Built Geometry on the Microstructure and Strength Characteristics of the Ti–6Al–4V Alloy Prepared by the Selective Laser Melting. Phys. Metals Metallogr., 2018, no. 119, pp. 1079–1086. DOI: 10.1134/S0031918X18110066.
  9. Cain V., Thijs L., Van Humbeeck J., Van Hooreweder B., Knutsen R. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Add. Man., 2015, vol. 5, pp. 68–76. DOI: 10.1016/j.addma.2014.12.006.
  10. Kok Y., Tan X.P., Wang P., Nai M.L.S., Loh N.H., Liu E., Tor S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials and Design, 2018, vol. 139, pp. 565–586. DOI: 10.1016/j.matdes.2017.11.021. Available at: https://www.sciencedirect.com/science/article/pii/S0264127517310493#!
  11. Hartunian P., Eshraghi M. Effect of Build Orientation on the Microstructure and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy. J. Manuf. Mater. Process., 2018, 2 (4), 69. DOI: 10.3390/jmmp2040069.
  12. Barba D., Alabort C., Tang Y.T., Viscasillas M.J., Reed R.C., Alabort E. On the size and orientation effect in additive manufactured Ti-6Al-4V. Materials and Design, 2020, vol. 186, 108235. DOI: https://doi.org/10.1016/j.matdes.2019.108235.
  13. Stepanov S.I., Loginov Y.N., Kuznetsov V.P., Popov A.A. Effect of Annealing on the Structure and Properties of Titanium Alloy with Cellular Architecture for Medical Applications. Metal Science and Heat Treatment, 2018, 60 (5–6), pp. 315–321. DOI: 10.1007/s11041-018-0278-2.
  14. Amin Yavari S., Ahmadi S.M., Pouran B., Schrooten J., Weinans H., Zadpoor A.A. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted metabiomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2015, vol. 43, pp. 91–100. DOI: 10.1016/j.jmbbm.2014.12.015.
  15. Van Hooreweder B., Apers Y., Lietaert K., Kruth J.P. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomaterialia, 2017, vol. 47, pp. 193–202. DOI: 10.1016/j.actbio.2016.10.005.
  16. Botvina L.R. Kinetika razrusheniya konstruktsionnykh materialov [Fracture Kinetics of Construction Materials]. Moscow, Nauka Publ., 1989, 230 p.
  17. Kotsan'da S. Ustalostnoye rastreskivaniye metallov [Fatigue Cracking of Metals, transl. from Polish by G.N. Mekheda, S.Ya. Yarema, ed.]. Moscow, Metallurgiya Publ., 1990, 632 p.
  18. Volkov S.S. The Effect of Damage at An Ensemble of Microstructure Points on the Margin of Safety in Structurally Heterogeneous Materials // Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 5, pp. 60–72. DOI: 10.17804/2410-9908.2019.5.060-072. Available at: http://dream-journal.org/issues/2019-5/2019-5_274.html (accessed: 13.08.2020).
  19. Loginov Y., Stepanov S., Khanykova C. Inhomogeneity of deformed state during compression testing of titanium implant. In: 2017 MATEC Web of Conferences, 13th International Scientific-Technical Conference on Dynamic of Technical Systems, DTS 2017, Rostov-on-Don, Sept. 13–15, 2017, vol. 132, 03009. DOI: 10.1051/matecconf/201713203009.
  20. Maamoun A.H., Xue Y.F., Elbestawi M.A., Veldhuis S.C. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy. Materials, 2018, 11 (12), 2343. DOI: 10.3390/ma11122343.
  21. Gibson L. Ashby M. Cellular Solids: Structure and Properties, 2nd ed., Cambridge Solid State Science Series, Cambridge, Cambridge University Press, 1997. DOI: 10.1017/CBO9781139878326.
  22. Xu Z.W., Liu A., Wang X.S. The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting. Materials Science and Engineering: A, 2019, vol. 767, 138409. DOI: 10.1016/j.msea.2019.138409.

И. С. Каманцев, Ю. Н. Логинов, С. В. Беликов, С. И. Степанов, М. С. Карабаналов, А. И. Голоднов

ОСОБЕННОСТИ РАЗРУШЕНИЯ ЯЧЕИСТЫХ СТРУКТУР, ПОЛУЧЕННЫХ ЛАЗЕРНЫМ СЕЛЕКТИВНЫМ СПЛАВЛЕНИЕМ

В работе на примере образцов с ячеистой архитектурой, полученных лазерным селективным сплавлением, рассмотрено влияние направления синтеза объектов ячеистой формы на характеристики разрушения в условиях циклического нагружения. Выявлены особенности в характере их разрушения и установлен механизм, обеспечивающий повышенное сопротивление усталостному разрушению объектов, имеющих наряду с ячеистым строением анизотропию свойств, обусловленных технологическими особенностями получения.

Благодарность: Работа поддержана в рамках мероприятия "Создание и функционирование сети международных научно-методических центров для распространения лучших международных практик подготовки, переподготовки и стажировки продвинутых кадров цифровой экономики в областях математики, информатики, технологий" (Соглашение №075-15-2019-1907 от 09.12.2019) и в соответствии с планом работ ИМАШ УрО РАН по теме АААА-А18-118020790145-0 в части определения характеристик сопротивления усталостному разрушению. Экспериментальная часть работы выполнена с использованием оборудования ЦКП «Пластометрия» ИМАШ УрО РАН.

Ключевые слова: селективное лазерное сплавление, ячеистые структуры, многоцикловая усталость, разрушение

Библиография:

  1. Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell / N. Soro, H. Attar, X. Wu, M. S. Dargusch // Materials Science and Engineering A. – 2019. – A 745. – P. 195–202. – DOI: 10.1016/j.msea.2018.12.104.
  2. Golodnov A. I., Loginov Y. N., Stepanov S. I. Numeric loading simulation of titanium implant manufactured using 3d printing // Solid State Phenomena. – 2018. – Vol. 284 SSP. – P. 380–385. – DOI: 10.4028/www.scientific.net/SSP.284.380.
  3. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases / V. V. Popov, G. Muller-Kamskii, A. Kovalevsky, A. Kolomiets, J. Ramon // Biomedical Engineering Letters. – 2018. – Vol. 8 (4). – P. 337–344. – DOI: 10.1007/s13534-018-0080-5.
  4. Functionality-packed additively manufactured porous titanium implants / I. A. J. Van Hengel, F. S. A. Gelderman, S. Athanasiadis, M. Minneboo, H. Weinans, A. C. Fluit, B. C. J. Van der Eerden, L. E. Fratila-Apachitei, I. Apachitei, A. A. Zadpoor // Materials Today Bio. – 2020. – Vol. 7. – DOI: 10.1016/j.mtbio.2020.100060.
  5. De Jonge C. P., Kolken H. M. A., Zadpoor A. A. Non-Auxetic Mechanical Metamaterials // Materials. – 2019. – Vol. 12 (4). – P. 635 (1–21). – DOI: 10.3390/ma12040635.
  6. Килина П. Н., Дроздов А. А., Сиротенко Л. Д. Формирование образцов с ячеистой структурой методом селективного лазерного спекания металлических порошков // Металлообработка. – 2015. – № 3 (87). – С. 29–31.
  7. Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: on the effect of the load direction / A. Cutolo, B. Engelen, W. Desmet, B. Van Hooreweder // Journal of the Mechanical Behavior of Biomedical Materials. – 2020. – Vol. 104. – P. 103656 (1–15). – DOI: 10.1016/j.jmbbm.2020.103656.
  8. Effect of Built Geometry on the Microstructure and Strength Characteristics of the Ti–6Al–4V Alloy Prepared by the Selective Laser Melting / N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva & M. S. Karabanalov // Phys. Metals Metallogr. – 2018. – No. 119. – P. 1079–1086. – DOI: 10.1134/S0031918X18110066.
  9. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting / V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, R. Knutsen // Additive Manufacturing. – 2015. – Vol. 5 – P. 68–76. – DOI: 10.1016/j.addma.2014.12.006.
  10. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review / Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu, S. B. Tor // Materials and Design. – 2018. – Vol. 139. – P. 565–586. – DOI: 10.1016/j.matdes.2017.11.021. – URL: https://www.sciencedirect.com/science/article/pii/S0264127517310493#!
  11. Hartunian P., Eshraghi M. Effect of Build Orientation on the Microstructure and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy // J. Manuf. Mater. Process. – 2018. –2 (4). – P. 69. – DOI: 10.3390/jmmp2040069.
  12. On the size and orientation effect in additive manufactured Ti-6Al-4V / D. Barba, C. Alabort, Y. T. Tang, M. J. Viscasillas, R. C. Reed, E. Alabort // Materials and Design. – 2020. – Vol. 186. – P. 108235. – DOI: 10.1016/j.matdes.2019.108235.
  13. Effect of Annealing on the Structure and Properties of Titanium Alloy with Cellular Architecture for Medical Applications / S. I. Stepanov, Yu. N. Loginov, V. P. Kuznetsov, A. A. Popov // Metal Science and Heat Treatment. – 2018. – Vol. 60 (5–6). – P. 315–321. – DOI: 10.1007/s11041-018-0278-2.
  14. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted metabiomaterials / S. Amin Yavari, S. M. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A. A. Zadpoor // Journal of the Mechanical Behavior of Biomedical Materials. – 2015. – Vol. 43. – P. 91–100.  – DOI: 10.1016/j.jmbbm.2014.12.015.
  15. Van Hooreweder B., Apers Y., Lietaert K., Kruth J.P. Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting // Acta Biomaterialia. – 2017. – Vol. 47. – P. 193–202. – DOI: 10.1016/j.actbio.2016.10.005.
  16. Ботвина Л. Р. Кинетика разрушения конструкционных материалов. – М. : Наука, 1989. – 230 с.
  17. Коцаньда С. Усталостное растрескивание металлов / пер. с польского Г. Н. Мехеда; под ред. С. Я. Яремы. – М. : Металлургия, 1990. – 632 с.
  18. Volkov S. S. The Effect of Damage at An Ensemble of Microstructure Points on the Margin of Safety in Structurally Heterogeneous Materials // Diagnostics, Resource and Mechanics of materials and structures. – 2019. – Iss. 5. – P. 60–72. – DOI: 10.17804/2410-9908.2019.5.060-072. – URL: http://dream-journal.org/issues/2019-5/2019-5_274.html (accessed: 13.08.2020).
  19. Loginov Y., Stepanov S., Khanykova C. Inhomogeneity of deformed state during compression testing of titanium implant // 2017 MATEC Web of Conferences, 13th International Scientific-Technical Conference on Dynamic of Technical Systems, DTS 2017, Rostov-on-Don, Sept. 13–15, 2017. – EDP Sciences, 2017. – Vol. 132. – P. 03009. – DOI: 10.1051/matecconf/201713203009.
  20. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy / A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis // Materials. – 2018. – Vol. 11 (12). – P. 2343. – DOI: 10.3390/ma11122343.
  21. Gibson L., & Ashby M. Cellular Solids: Structure and Properties. – 2nd ed. – Cambridge Solid State Science Series. – Cambridge : Cambridge University Press, 1997. – DOI: 10.1017/CBO9781139878326.
  22. Xu Z. W., Liu A., Wang X. S. The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting // Materials Science and Engineering: A. – 2019. – Vol. 767. – P. 138409. – DOI: 10.1016/j.msea.2019.138409.

PDF      

Библиографическая ссылка на статью

Fracture Behavior of Cellular Structures Obtained by Selective Laser Melting / I. S. Kamantsev, Yu. N. Loginov, S. V. Belikov, S. I. Stepanov, M. S. Karabanalov, A. I. Golodnov // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 4. - P. 35-47. -
DOI: 10.17804/2410-9908.2020.4.035-047. -
URL: http://dream-journal.org/issues/2020-4/2020-4_294.html
(accessed: 30.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru