Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 1

2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

N. V. Burmasheva, E. Yu. Prosviryakov

AN EXACT SOLUTION FOR DESCRIBING THE UNIDIRECTIONAL MARANGONI FLOW OF A VISCOUS INCOMPRESSIBLE FLUID WITH THE NAVIER BOUNDARY CONDITION. TEMPERATURE FIELD INVESTIGATION

A new exact solution of the Oberbeck–Boussinesq equation system, which describes the unidirectional convective flow of a viscous incompressible fluid in an infinite horizontal layer, is obtained. The fluid velocity depends on the vertical (transverse) coordinate. Pressure and temperature are the linear forms relative to the horizontal (longitudinal) coordinate with coefficients depending on the vertical coordinate. The fluid layer is bounded by a rigid infinite plane (lower boundary). In the study of fluid convection, it is assumed that the deformation of the free (upper) boundary of the layer is neglected. The thermocapillary effect inducing a convective flow is taken into account at the upper boundary. The contact of the moving fluid with the lower boundary occurs with slippage. The fluid slippage is described by the Navier boundary slip condition. The paper focusses on the study of the temperature field, which is spatially inhomogeneous. The temperature field is a seventh-degree polynomial with respect to the vertical coordinate. When studying the temperature distribution in the fluid layer, particular cases of the Navier slip condition are discussed. At the zero slip length, the boundary condition is transformed into the no-slip condition. When the slip length tends to infinity, there is a perfect slip boundary condition. It is demonstrated that the temperature field can be stratified into several zones relative to the reference value. In all the considered cases, the number of stratification zones does not exceed two. It is also shown that, in the case of perfect slip, the number of temperature field stratification zones is strictly equal to two, and the position of the temperature field stratification point depends neither on the physical parameters of the fluid nor on the conditions of heating of its boundaries.

Keywords: Oberbeck–Boussinesq equation system, unidirectional flow, layered flow, exact solution, Marangoni convection, counterflows, Navier slip conditionAcknowledgment

Bibliography:

References

  1. Gershuni G.Z., Zhukhovitskii E.M. Convective Stability of Incompressible Fluids: Israel Program for Scientific Translations. Jerusalem, Keter Publishing House, 1976, 330 p.

  2. Pukhnachov V.V. Hierarchy of models in the theory of convection. J. Math. Sci., 2004, vol. 123, no. 6, pp. 4607–4620. DOI: 10.1023/B:JOTH.0000041478.45024.64.

  3. Burmasheva N.V., Prosviryakov E.Yu. An Exact Solution to the Description of a Unidirectional Marangoni Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition. Velocity Field Investigation. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 5, pp. 23–39. DOI: 10.17804/2410-9908.2019.5.023-039.

  4. Petrov A.G. Exact solution of the Navier-Stokes equations in a fluid layer between the moving parallel plates. Journal of Applied Mechanics and Technical Physics, 2012, vol. 53, no. 5, pp. 642–646. DOI: 10.1134/S0021894412050021.

  5. Baranovskiy E.S., Artemov E.A. On the stationary flow of second-order fluids in a channel. Vestnik Sankt-Peterburgskogo Universiteta. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, vol. 13, no. 4, pp. 342–353. DOI: 10.21638/11701/spbu10.2017.401. (In Russian).

  6. Knyazev D.V., Kolpakov I.Y. The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius. Rus. J. Nonlin. Dyn., 2015, vol. 11, no. 1, pp. 89–97. DOI: 10.20537/nd1501004. (In Russian).

  7. Borzenko E.I., Diakova O.A., Shrager G.R. Studying the slip phenomenon for a viscous fluid flow in a curved channel. Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2 (28), pp. 35–44. (In Russian).

  8. Bharat Bhushan. Adhesion and Stiction: Mechanisms, Measurement Techniques, and Methods for Reduction. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2003, vol. 21, no. 6, pp. 2262–2296. DOI: 10.1116/1.1627336.

  9. Dement’ev O.N. Effect of convection on the stability of a liquid with a nonuniformly distributed heavy admixture. Journal of Applied Mechanics and Technical Physics, 2000, vol., 41, iss. 5, pp. 923–929. DOI: 10.1007/BF02468739.

  10. Aristov S.N., Prosviryakov E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, vol. 50, no. 3, pp. 286–293. DOI: 10.1134/S0040579516030027.

  11. Gorshkov A.V., Prosviryakov E.Yu.  Analytic solutions of stationary complex convection describing a shear stress field of different signs. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, vol. 23, no. 2, pp. 32–41. DOI: 10.21538/0134-4889-2017-23-2-32-41. (In Russian).

  12. Aristov S.N., Knyazev D.V. Three-dimensional viscous jet flow with plane free boundaries. Fluid Dynamics, 2017, vol. 52, no. 2, pp. 215–218. DOI: 10.1134/S0015462817020053.

  13. Aristov S.N., Shvarts K.G. Advective flow in a rotating liquid film. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 1, pp. 188–194. DOI: 10.1134/S0021894416010211.

  14. Bekezhanova V.B., Goncharova O.N. Modeling of three dimensional thermocapillary flows with evaporation at the interface based on the solutions of a special type of the convection equations. Applied Mathematical Modelling, 2018, vol. 62, pp. 145–162. DOI: 10.1016/j.apm.2018.05.021.

  15. Bekezhanova V.B., Rodionova A.V. Longwave stability of two-layer fluid flow in the inclined plane. Fluid Dynamics, 2015, vol. 50, no. 6, pp. 723–736. DOI: 10.1134/S0015462815060010.

  16. Bekezhanova V.B., Goncharova O.N. Analysis of the exact solution for the evaporative convection problem and properties of the characteristic perturbations. International Journal of Thermal Sciences, 2018, vol. 130, pp. 323–332. DOI: 10.1016/j.ijthermalsci.2018.05.001.

  17. Goncharova O.N., Rezanova E.V., Lyulin Y.V., Kabov O.A. Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation. High Temperature, 2017, vol. 55, no 6, pp. 887–897. DOI: 10.1134/S0018151X17060074.

  18. Bratsun D.A., Gordeeva V.Y., Lyushnin A.V. Peculiarities of the behavior of an ultrathin layer of an evaporable liquid in the presence of a surfactant on a free deformable interface. Vestnik Permskogo Nauchnogo Tsentra UrO RAN, 2017, no. 2, pp. 35–38. (In Russian).

  19. Bratsun D.A., Mosheva E.A. Peculiar properties of density wave formation in a two-layer system of reacting miscible liquids. Computational Continuum Mechanics, 2018, vol. 11, no. 3, pp. 302–322. DOI: 10.7242/1999-6691/2018.11.3.23. (In Russian).

  20. Bratsun D.A. Internal shock-type density waves induced by chemoconvection in miscible reacting liquids. Technical Physics Letters, 2017, vol. 43, no. 20, pp. 69–77. DOI: 10.21883/PJTF.2017.20.45152.16927. (In Russian).

  21. Mosina E.V., Chеrnyshеv I.V. Fluid Flow near the Porous Boundary. Vestnik Nizhegorodskogo Universiteta im. N.I. Lobachevskogo, 2011, iss. 4, no. 3, pp. 999–1001. (In Russian).

  22. Mosina E.V., Chеrnyshеv I.V. Mosina E.V., Chеrnyshеv I.V. The permeability of two dimentional porous medium of square fibers (cell model). Science Journal of Volgograd State University. Mathematics. Physics, 2017, no. 2 (39), pp. 56–64 DOI: 10.15688/jvolsu1.2017.2.5. (In Russian).

  23. Domnich A.A., Baranovskii E.S., Artemov M.A. On a mathematical model of non-isothermal creeping flows of a fluid through a given domain. Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2019, vol, 23, no. 3, pp. 417–429. DOI: 10.14498/vsgtu1713. (In Russian).

  24. Polyakov K.A. The effect of near-wall slip on ball resistance to motion in a viscous fluid at low Reynolds numbers. Obozrenie Prikladnoy i Promyshlennoy Matematiki, 2014, vol. 21, no. 4. (In Russian).

  25. Arkhipov V.A., Vasenin I.M., Usanina A.S., Tkachenko A.S. Unsteady rise of a bubble in a viscous fluid at small Reynolds numbers. Fluid Dynamics, 2015, vol. 50, no. 1, pp. 79–86. DOI: 10.1134/S0015462815010093.

  26. Suleimanov B.A. Mechanism of slip effect in gassed liquid flow. Colloid Journal, 2011, vol. 73, iss. 6, pp. 846–855. DOI: 10.1134/S1061933X11050140.

  27. Shablovsky O.N. Near-wall fluid slip and nonlinear properties of a velocity vortex in a two-dimensional flow. Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 1997, vol. 6, no. 1 (1), pp. 154–163. (In Russian).

  28. Mosina E.V., Chernyshev I.V. Slip condition on the surface of a model fibrous porous medium. Technical Physics Letters, 2009, vol. 35, pp. 245–248. DOI: 10.1134/S1063785009030158.

  29. Maduar S.R., Belyaev A.V., Lobaskin V., Vinogradova O.I. Electrohydrodynamics Near Hydrophobic Surfaces. Phys. Rev. Lett., 2015, vol. 114 (11), pp. 118301(5). DOI: 10.1103/PhysRevLett.114.118301.

  30. Ageev A.I., Osiptsov A.N. Self-similar regimes of liquid-layer spreading along a superhydrophobic surface. Fluid Dynamics, 2014, vol. 49, no. 3, pp. 330–342. DOI: 10.1134/S0015462814030041.

  31. Filippov A.N., Hanukaeva D.Y., Kalinin V.V. Viscous flow in a cylindrical channel with surface coated with porous layer. Trudy RGU Nefti i Gaza im. I.M. Gubkina, 2012, no. 3 (268), pp. 63–72. (In Russian).

  32. Aristov S.N., Prosviryakov E.Y. On laminar flows of planar free convection. Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 4, pp. 651–657. DOI: 10.20537/nd1304004.

  33. Burmasheva N.V., Prosviryakov E.Yu. Temperature field investigation in layered flows of a vertically swirling viscous incompressible fluid under two thermocapillar forces at a free boundary. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 1, pp. 6–42. DOI: 10.17804/2410-9908.2019.1.006-042. URL: http://dream-journal.org/issues/2019-1/2019-1_236.html

  34. Burmasheva N.V., Prosviryakov E.Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskiye Nauki, 2019, vol. 23, no. 2, pp. 341–360. DOI: 10.14498/vsgtu1670. (In Russian).

  35. Navier С.L.M.H. M'emoire sur les Lois du Mouvement des Fluides. M'em. Acad. Sci. Inst. de France, 1823, vol. 2, no. 6, pp. 389–440.

  36. Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, no. 5, pp. 642–662. DOI: 10.1134/S0040579509050066.

  37. Marangoni C. Sull espansione delle goccie di un liquido galleggiante sulla superficie di altro liquid. Pavia, Tipografia dei fratelli Fusi, 1865.

  38. Bekezhanova V.B. Convective instability of Marangoni-Poiseuille flow under a longitudinal temperature gradient. Journal of Applied Mechanics and Technical Physics, 2011, vol. 52, no. 1, pp. 74–81. DOI: 10.1134/S0021894411010111.

  39. Aktershev S.P. Thermocapillary effect and periodic structures on the surface of a heated viscous liquid film. Proceedings of the Institute of Mechanics of Ufa Branch of RAS, 2007, no. 5, pp. 79–84. DOI: 10.21662/uim2007.1.005. (In Russian).

  40. Gordeeva V.Y., Lyushnin A.V. Influence of the thermocapillary effect on the dynamics and stability of motion of a thin evaporating film. Technical Physics, 2013, vol. 58, no. 3, pp. 351–357. DOI: 10.1134/S1063784213030092.

Н. В. Бурмашева, Е. Ю. Просвиряков

ТОЧНОЕ РЕШЕНИЕ ДЛЯ ОПИСАНИЯ ОДНОНАПРАВЛЕННОГО ТЕЧЕНИЯ МАРАНГОНИ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ С ГРАНИЧНЫМ УСЛОВИЕМ НАВЬЕ: ИССЛЕДОВАНИЕ ПОЛЯ ТЕМПЕРАТУРЫ

В статье получено новое точное решение системы уравнений Обербека–Буссинеска, описывающее однонаправленное конвективное течение вязкой несжимаемой жидкости в бесконечном горизонтальном слое. Скорость жидкости зависит от вертикальной (поперечной) координаты. Давление и температура являются линейными формами относительно горизонтальной (продольной) координаты с коэффициентами, зависящими от вертикальной координаты. Слой жидкости ограничен недеформируемой бесконечной плоскостью (нижняя граница). При исследовании конвекции в жидкости введено допущение о пренебрежении деформацией свободной (верхней) границы слоя. На верхней границе учитывается термокапиллярный эффект, индуцирующий конвективное течение. Контакт движущейся жидкости с нижней границей осуществляется с проскальзыванием. Проскальзывание жидкости описывается граничным условием скольжения Навье. Основное внимание в статье уделено исследованию поля температуры, являющегося пространственно неоднородным. Температурное поле является многочленом седьмой степени относительно вертикальной координаты. При исследовании распределения температуры в слое жидкости были изучены частные случаи условия проскальзывания Навье. При нулевой длине скольжения граничное условие Навье трансформируется в условие прилипания. При стремлении длины скольжения к бесконечности имеет место граничное условие идеального скольжения. Показано, что в каждом из трех рассмотренных случаев температурное поле может расслаиваться на несколько зон относительно отсчетного значения. Причем во всех рассмотренных случаях число зон стратификации не превосходит двух. Также показано, что в случае идеального скольжения число зон стратификации температурного поля строго равно двум, и положение точки стратификации поля температуры не зависит ни от физических параметров жидкости, ни от условий нагрева ее границ.

Ключевые слова: система уравнений Обербека–Буссинеска, однонаправленное течение, слоистое течение, точное решение, конвекция Марангони, противотечения, условие проскальзывания Навье

Библиография:

Литература

  1. Гершуни Г. З., Жуховицкий Е. М. Конвективная неустойчивость несжимаемой жидкости. – М. : Наука, 1972. – 532 с.

  2. Pukhnachov V. V. Hierarchy of models in the theory of convection // J. Math. Sci. – 2004. – Vol. 123, no. 6. – P. 4607–4620. – DOI: 10.1023/B:JOTH.0000041478.45024.64.

  3. Burmasheva N.V., Prosviryakov E.Yu. An Exact Solution to the Description of a Unidirectional Marangoni Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition. Velocity Field Investigation // Diagnostics, Resource and Mechanics of materials and structures. – 2019. – Iss. 5. – P. 23–39. – DOI: 10.17804/2410-9908.2019.5.023-039.

  4. Petrov A. G. Exact solution of the Navier-Stokes equations in a fluid layer between the moving parallel plates // Journal of Applied Mechanics and Technical Physics. – 2012. – Vol. 53, no. 5. – P. 642–646. – DOI: 10.1134/S0021894412050021.

  5. Барановский Е. С., Артемов М. А. О стационарном течении жидкостей второго порядка в канале // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. – 2017. – Т. 13, вып. 4. – С. 342–353. – DOI: 10.21638/11701/spbu10.2017.401.

  6. Князев Д. В., Колпаков И. Ю. Точные решения задачи о течении вязкой жидкости в цилиндрической области с меняющимся радиусом // Нелинейная динамика. – 2015. – Т. 11, № 1. – С. 89–97. – DOI: 10.20537/nd1501004.

  7. Борзенко Е. И., Дьякова О. А., Шрагер Г. Р. Исследование явления проскальзывания в случае течения вязкой жидкости в изогнутом канале // Вестник Томского государственного университета. Математика и механика. – 2014 – № 2 (28). – С. 35–44.

  8. Bharat Bhushan. Adhesion and Stiction: Mechanisms, Measurement Techniques, and Methods for Reduction // Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures. – 2003. – Vol. 21, no. 6. – P. 2262–2296. – DOI: 10.1116/1.1627336.

  9. Dement’ev O. N. Effect of convection on the stability of a liquid with a nonuniformly distributed heavy admixture // Journal of Applied Mechanics and Technical Physics. – 2000. – Vol. 41, iss. 5. – P. 923–929. – DOI: 10.1007/BF02468739.

  10. Aristov S. N., Prosviryakov E. Y. A new class of exact solutions for three-dimensional thermal diffusion equations // Theoretical Foundations of Chemical Engineering. – 2016. – Vol. 50, no. 3. – P. 286–293. – DOI: 10.1134/S0040579516030027.

  11. Горшков А. В., Просвиряков Е. Ю. Аналитические решения стационарной сложной конвекции, описывающие поле касательных напряжений разного знака // Труды ИММ. – 2017. – Т. 23, вып. 2. – С. 32–41. – DOI: 10.21538/0134-4889-2017-23-2-32-41.

  12. Aristov S. N., Knyazev D. V. Three-dimensional viscous jet flow with plane free boundaries // Fluid Dynamics. – 2017. – Vol. 52, no. 2. – P. 215–218. – DOI: 10.1134/S0015462817020053.

  13. Aristov S. N., Shvarts K. G. Advective flow in a rotating liquid film // Journal of Applied Mechanics and Technical Physics. – 2016. – Vol. 57, no. 1. – P. 188–194. – DOI: 10.1134/S0021894416010211.

  14. Bekezhanova V. B., Goncharova O. N. Modeling of three dimensional thermocapillary flows with evaporation at the interface based on the solutions of a special type of the convection equations // Applied Mathematical Modelling. – 2018. – Vol. 62. – С. 145–162. – DOI:  10.1016/j.apm.2018.05.021.

  15. Bekezhanova V. B., Rodionova A. V. Longwave stability of two-layer fluid flow in the inclined plane // Fluid Dynamics. – 2015. – Vol. 50, no. 6. – P. 723–736. – DOI: 10.1134/S0015462815060010.

  16. Bekezhanova V. B., Goncharova O. N. Analysis of the exact solution for the evaporative convection problem and properties of the characteristic perturbations // International Journal of Thermal Sciences. – 2018. – Vol. 130. – P. 323–332. – DOI: 10.1016/j.ijthermalsci.2018.05.001.

  17. Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation / O. N. Goncharova, E. V. Rezanova, Y. V. Lyulin, O. A. Kabov // High Temperature. – 2017. – Vol. 55, no 6. – P. 887–897. – DOI: 10.1134/S0018151X17060074.

  18. Брацун Д. А., Гордеева В. Ю., Люшнин А. В. Особенности поведения ультратонкого слоя испаряющейся жидкости при наличии на свободной деформируемой границе сурфактанта // Вестник Пермского научного центра УрО РАН. – 2017. – № 2. – С. 35–38.

  19. Брацун Д. А., Мошева Е. А. Особенности формирования волн плотности в двухслойной системе смешивающихся реагирующих жидкостей // Вычислительная механика сплошных сред. – 2018. – Т. 11, № 3. – С. 302–322. – DOI: 10.7242/1999-6691/2018.11.3.23.

  20. Брацун Д. А. Внутренние волны плотности ударного типа, индуцированные хемоконвекцией в смешивающихся реагирующих жидкостях // Письма в Журнал технической физики. – 2017. – Т. 43, № 20. – С. 69–77. – DOI: 10.21883/PJTF.2017.20.45152.16927.

  21. Мосина Е. В., Чернышев И. В. Течение жидкости в окрестности пористой границы // Вестник Нижегородского университета им. Н. И. Лобачевского. – 2011. – № 4 (3). – С. 999–1001.

  22. Мосина Е. В., Чернышев И. В. Проницаемость двумерной пористой среды из волокон квадратного сечения (ячеечная модель) // Вестник Волгоградского государственного университета. Серия 1. Математика. Физика. – 2017. – № 2 (39). – С. 56–64. – DOI: 10.15688/jvolsu1.2017.2.5.

  23. Домнич А. А., Барановский Е. С., Артёмов М. А. О математической модели неизотермического ползущего течения жидкости через заданную область // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. – 2019. – Т. 23, № 3. – С. 417–429. – DOI: 10.14498/vsgtu1713.

  24. Поляков К. А. Влияние пристеночного скольжения, на сопротивление шара движению в вязкой жидкости при малых числах Рейнольдса // Обозрение прикладной и промышленной математики. – 2014. – Т. 21, вып. 4.

  25. Unsteady rise of a bubble in a viscous fluid at small Reynolds numbers / V. A. Arkhipov, I. M. Vasenin, A. S. Usanina, A. S. Tkachenko // Fluid Dynamics. – 2015. – Vol. 50, no. 1. – P. 79–86. – DOI: 10.1134/S0015462815010093.

  26. Suleimanov B. A. Mechanism of slip effect in gassed liquid flow // Colloid Journal. – 2011. – Vol. 73, iss. 6. – P. 846–855. – DOI: 10.1134/S1061933X11050140.

  27. Шабловский О. Н. Пристеночное скольжение жидкости и нелинейные свойства вихря скорости в двухмерном потоке // Челябинский физико-математический журнал. – 1997. – Т. 6, № 1 (1). – С. 154–163.

  28. Mosina E. V., Chernyshev I. V. Slip condition on the surface of a model fibrous porous medium // Technical Physics Letters. – 2009. – Vol. 35. – P. 245–248. – DOI: 10.1134/S1063785009030158.

  29. Electrohydrodynamics near Hydrophobic Surfaces / S. R. Maduar, A. V. Belyaev, V. Lobaskin, O. I. Vinogradova // Phys. Rev. Lett. – 2015. – Vol. 114 (11). – P. 118301(5). – DOI: 10.1103/PhysRevLett.114.118301.

  30. Ageev A. I., Osiptsov A. N. Self-similar regimes of liquid-layer spreading along a superhydrophobic surface. Fluid Dynamics, 2014, vol. 49, no. 3, pp. 330–342. DOI: 10.1134/S0015462814030041.

  31. Филиппов А. Н., Ханукаева Д. Ю., Калинин В. В. Течение вязкой жидкости в цилиндрическом канале с покрытой пористым слоем поверхностью // Труды РГУ нефти и газа им. И. М. Губкина. – 2012. – № 3 (268). – С. 63–72.

  32. Аристов С. Н., Просвиряков Е. Ю. О слоистых течениях плоской свободной конвекции // Нелинейная динам. – 2013. – Т. 9. – Вып. 4. – С. 651–657.

  33. Burmasheva N. V., Prosviryakov E. Yu. Temperature field investigation in layered flows of a vertically swirling viscous incompressible fluid under two thermocapillar forces at a free boundary // Diagnostics, Resource and Mechanics of materials and structures. – 2019. – Iss. 1. – P. 6–42. – DOI: 10.17804/2410-9908.2019.1.006-042.

  34. Burmasheva N. V., Prosviryakov E. Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки [Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta-seriya-fiziko-matematicheskiye nauki]. – 2019. – Т. 23, № 2. – С. 341–360. – DOI: 10.14498/vsgtu1670.

  35. Navier С. L. M. H. M'emoire sur les Lois du Mouvement des Fluides // M'em. Acad. Sci. Inst. de France. – 1823. – Т. 2 (6). – P. 389–440.

  36. Aristov S. N., Knyazev D. V., Polyanin A. D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables // Theoretical Foundations of Chemical Engineering. – 2009. – Vol. 43, no. 5. – P. 642–662. – DOI: 10.1134/S0040579509050066.

  37. Marangoni C. Sull espansione delle goccie di un liquido galleggiante sulla superficie di altro liquid. – Pavia : Tipografia dei fratelli Fusi, 1865.

  38. Бекежанова В. Б. Конвективная неустойчивость течения Марангони-Пуазейля при наличии продольного градиента температуры // Прикл. мех. техн. физ. – 2011. – Т. 52, вып. 1. – С. 92–100.

  39. Актершев С. П. Термокапиллярный эффект и периодические структуры на поверхности нагреваемой пленки вязкой жидкости // Тр. Инст. Мех. УНЦ РАН. – 2007. – Т. 5, вып. 1. – С. 79–84. – DOI: 10.21662/uim2007.1.005.

  40. Gordeeva V. Y., Lyushnin A. V. Influence of the thermocapillary effect on the dynamics and stability of motion of a thin evaporating film // Technical Physics. – 2013. – Vol. 58. – No. 3. – P. 351–357. – DOI: 10.1134/S1063784213030092.


PDF        

 

импакт-фактор
РИНЦ 0.284

 

МРДМК 2020

МРДМК 2019
МРДМК 2019

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2020, www.imach.uran.ru