Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 1

Все выпуски
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

D. A. Tretyakov

ACOUSTIC ANISOTROPY AT DIFFERENT STAGES OF THE DEFORMATION PROCESS IN METALS

DOI: 10.17804/2410-9908.2020.1.043-056

The paper investigates acoustic anisotropy arising under inelastic loading of industrial alloy structures. The results of ultrasonic measurements on specimens of an aluminum-manganese alloy indicate a nonlinear nonmonotonic strain dependence of acoustic anisotropy. It cannot be explained in terms of the theory of acoustoplasticity and the Murnaghan nonlinear elastic model. This theory establishes a linear relationship between acoustic anisotropy and plastic strain. The location of the zones of nonmonotonic changes in the value of acoustic anisotropy is compared with the points on the strain curve. The results suggest that that acoustic anisotropy is an indicator of the beginning of various stages of the deformation process in metals.

Acknowledgement: The research was financially supported by the Siemens grant program.

Keywords: acoustic anisotropy, plastic deformation, ultrasonic waves, nondestructive testing, acoustoplasticity

References:

  1. Biot M.A. The influence of initial stress on elastic waves. Journal of Applied Physics, 1940, vol. 1, no. 8, pp. 522–530. DOI: 10.1063/1.1712807.

  2. Truesdell C. General and exact theory of waves in finite elastic strain. Archive for Rational Mechanics and Analysis, 1961, vol. 8, no. 1, pp. 263–296. DOI: 10.1007/BF00277444.

  3. Hughes D.S., Kelly J.L. Second-order elastic deformation of solids. Physical Review, 1953, vol. 92, no. 5, pp. 1145–1159. DOI: 10.1103/PhysRev.92.1145.

  4. Benson R.W., Raelson V.J. From ultrasonics to a new stress-analysis technique. Acoustoelasticity. Product Eng., 1959, vol. 30, no. 29, pp. 56–59.

  5. Bobrenko V.M., Kutsenko A.N., Sheremetikov A.S. Acoustic tensometry. II: Methods and apparatus/survey. Soviet Journal of Nondestructive Testing, 1981, vol. 16, no. 12, pp. 910–924.

  6. Bobrenko V.M., Vangeli M.S., Kutsenko A.N. Acoustic Methods of Control of the Stressed State of Machine Design Materials. Kishinev, Shtiintsa Publ., 1981, 148 p. (In Russian).

  7. Bobrenko V.M. Ultrasonic methods and devices for inspecting mechanical stresses. Soviet Journal of Nondestructive Testing, 1984, vol. 19, no. 12, pp. 886–891.

  8. Guz' A.N., Makhort F.G., Gushcha O.I., Lebedev V.K. Theory underlying the determination of initial stresses from the results of ultrasonic measurements. International Applied Mechanics, 1971, vol. 7, no. 6, pp. 676–679. DOI: 10.1007/BF00888415.

  9. Guz A.N., Makhort F.G., Gushcha O.I., Lebedev V.K. Osnovy ultrazvukovogo nerazrushayushchego metoda opredeleniya napryazheniy v tverdykh telakh [Basics of Ultrasonic Nondestructive Method for Determining the Stresses in Solids]. Kiev, Naukova Dumka Publ., 1974, 106 p. (In Russian).

  10. Guz A.N., Makhort F.G., Gushcha O.I. Vvedenie v akustouprugost [Introduction to Acoustoelasticity]. Kiev, Naukova Dumka Publ., 1977, 162 p. (In Russian).

  11. Bystrov V.F., Guzovsky V.V., Zolotov V.F., Nikitina N.E. Influence of technological processing of high-strength steel on the coefficients of elastic-acoustic coupling. Soviet Journal of Nondestructive Testing, 1986, no. 7, pp. 92–93. (In Russian).

  12. Guzovsky V.V., Zolotov V.F., Karzov G.P., Konyukhov B.A., Nikitina N.E. Improving the accuracy of the acoustic method for determining residual stresses in welded structures. Sudostroenie, 1988, no. 5, pp. 41–42. (In Russian).

  13. Gushcha O.I., Makhort F.G. Acoustic method of determining biaxial residual stresses. International Applied Mechanics, 1976, vol. 12, no. 10, pp. 1010–1013. DOI: 10.1007/BF00885046.

  14. Bobrenko V.M., Averbukh I.I. Ultrasonic method of measuring stresses in parts of threaded joints. Soviet Journal of Nondestructive Testing, 1974, vol. 10, no. 1, pp. 59–66.

  15. Nikitina N.E. Akustouprugost. Opyt prakticheskogo primeneniya [Acoustoelasticity. Experience of Practical Usage]. Nizhniy Novgorod, TALAM Publ., 2005, 208 p. (In Russian).

  16. Nikitina N.E. The effect of the intrinsic anisotropy of material on the accuracy of stress measurement by the method of acoustoelasticity. Russian Journal of Nondestructive Testing, 1996, vol. 32, no. 8, pp. 650–656.

  17. Nikitina, N.E. Studies of the stressed state of welded parts by the acoustoelasticity method. Probl. Mashinostr. Nadezhnosti Mash., 1999, no. 4, pp. 70–73.

  18. Nikitina N.E. Determination of plane stress states in structural materials by using elastic body waves. Russian Journal of Nondestructive Testing, 1999, vol. 35, no. 1, pp. 41–46.

  19. Kamyshev A.V., Nikitina N.E., Smirnov V.A. Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method. Russian Journal of Nondestructive Testing, 2010, vol. 46, no. 3, pp. 189–193. DOI: 10.1134/S106183091003006X.

  20. Nikitina N.Y., Kamyshev A.V., Kazachek S.V. The application of the acoustoelasticity method for the determination of stresses in anisotropic pipe steels. Russian Journal of Nondestructive Testing, 2015, vol. 51, no. 3, pp. 171–178. DOI: 10.1134/S1061830915030079.

  21. Kamyshev A.V., Pasmanik L.A., Smirnov V.A., Modestov V.S., Pivkov A.V. Use of acoustic anisotropy parameter for the analysis of damage accumulation in the area of SW111 during production and operation of steam generators PGV-1000. In: Transactions of the 9-th International Scientific and Technical Conference: Safety assurance of NPP with VVER. Scientific and technical electronic edition, May 19–22, 2015, OKB “Gidropress” Publ., Podolsk, Russia. (In Russian).

  22. Pao Y.H. Theory of Acoustoelasticity and Acoustoplasticity. In: Solid Mechanics Research for Quantitative Non-destructive Evaluation, Springer, Dordrecht, 1987, pp. 257–273. DOI: 10.1007/978-94-009-3523-5_16.

  23. Pao Y.H., Wu T.T., Gamer U. Acoustoelastic birefringences in plastically deformed solids: Part I: Theory. Journal of Applied Mechanics, 1991, vol. 58, no. 1, pp. 11–17. DOI: 10.1115/1.2897137.

  24. Wu T.T., Hirao M., Pao Y.H. Acoustoelastic birefringences in plastically deformed solids. Part II: Experiment. Journal of Applied Mechanics, 1991, vol. 58, no. 1, pp. 18–23. DOI: 10.1115/1.2897148.

  25. Kobayashi M. Theoretical study of acoustoelastic effects caused by plastic anisotropy growth. International Journal of Plasticity, 1987, vol. 3, no. 1, pp. 1–20. DOI: 10.1016/0749-6419(87)90014-3.

  26. Kobayashi M. Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation. Part I: Theory. International Journal of Plasticity, 1998, vol. 14, no. 6, pp. 511–522. DOI: 10.1016/S0749-6419(98)00005-9.

  27. Kobayashi M. Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation. Part II: Experiment and simulation. International Journal of Plasticity, 1998, vol. 14, no. 6, p. 523–535. DOI: 10.1016/S0749-6419(98)00006-0.

  28. Murnaghan F.D. Finite deformations of an elastic solid. American Journal of Mathematics, 1937, vol. 59, no. 2, p. 235–260. DOI: 10.2307/2371405.

  29. Hirao M., Pao Y. H. Dependence of acoustoelastic birefringence on plastic strains in a beam. The Journal of the Acoustical Society of America, 1985, vol. 77, no. 5, pp. 1659–1664. DOI: 10.1121/1.391964.

  30. Ghosh S., Li M., Gardiner D. A computational and experimental study of cold rolling of aluminum alloys with edge cracking. Journal of Manufacturing Science and Engineering, 2004, vol. 126, no. 1, p. 74–82. DOI: 10.1115/1.1645877.

  31. Belyaev A.K., Polyanskiy V.A., Semenov A.S., Tretyakov D.A., Yakovlev Y.A. Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state. Procedia Structural Integrity, 2017, vol. 6, pp. 201–207. DOI: 10.1016/j.prostr.2017.11.031.

  32. O'Neill B., Maev R.G. Acousto-elastic measurement of the fatigue damage in Waspaloy. Research in Nondestructive Evaluation, 2006, vol. 17, no. 3, pp. 121–135. DOI: 10.1080/09349840600787931.

  33. Riedel H., Andrieux F., Walde T., Karhausen K. F. The formation of edge cracks during rolling of metal sheet. Steel Research International, 2007, vol. 78, no. 10–11, pp. 818–824. DOI: 10.1002/srin.200706291.

  34. Ivanova Y., Partalin T., Pashkuleva D. Acoustic investigations of the steel samples deformation during the tensile. Russian Journal of Nondestructive Testing, 2017, vol. 53, no. 1, pp. 39–50. DOI: 10.1134/S1061830917010077.

  35. Kurashkin K.V., Gonchar A.V. Variation of acoustic characteristics of an aluminum alloy during plastic deformation at room and subzero temperatures. In: AIP Conference Proceedings, AIP Publishing, 2018, vol. 2053, no. 1, pp. 030030. DOI: 10.1063/1.5084391.

  36. Alhimenko A.A., Belyaev A.K., Grishchenko A.I., Semenov A.S., Tretyakov D.A., Polyanskiy V.A., Yakovlev Y.A. Propagation of acoustic waves during the control of hydrogen-induced destruction of metals by the acoustoelastic effect. 2018 Days on Diffraction (DD), IEEE, 2018, pp. 11–16. DOI: 10.1109/DD.2018.8553151.

  37. Belyaev A.K., Grishchenko A.I., Polyanskiy V.A., Semenov A.S., Tretyakov D.A., Shtukin L. V., Arseniev D.G., Yakovlev Y.A. Acoustic anisotropy and dissolved hydrogen as an indicator of waves of plastic deformation. 2017 Days on Diffraction (DD), IEEE, 2017, pp. 39–44. DOI: 10.1109/DD.2017.8167992.

  38. Semenov A.S., Polyanskii V.A., Shtukin L.V., Tretyakov D.A. Effect of Surface Layer Damage on Acoustic Anisotropy. Journal of Applied Mechanics and Technical Physics, 2018, vol. 59, no. 6, pp. 1136–1144. DOI: 10.1134/S0021894418060202.

  39. Alekseeva E.L., Belyaev A.K., Pasmanik L.A., Polyanskiy A.M., Polyanskiy V.A., Tretiakov D.A., Yakovlev Y.A. A study of hydrogen cracking in metals by the acoustoelasticity method. In: AIP Conference Proceedings, AIP Publishing, 2017, vol. 1915, no. 1, pp. 030001. DOI: 10.1063/1.5017321.

  40. Belyaev A.K., Mansyrev D.E., Polyanskiy V.A., Polyanskiy A.M., Tretyakov D.A., Yakovlev Yu.A. Boundary Layer of Hydrogen Concentration under Plastic Deformation. Diagnostics, Resource and Mechanics of Materials and Structures, 2017, no. 4, pp. 32–43. DOI: 10.17804/2410-9908.2017.4.032-043. Available at: http://dream-journal.org/issues/2017-4/2017-4_167.html

  41. Polyanskiy V.A., Belyaev A.K., Yakovlev Y.A., Polyanskiy A.M., Tretyakov D.A. Influence of the skin effect of plastic deformation on hydrogen accumulation in metals. In: AIP Conference Proceedings, AIP Publishing, 2018, vol. 2053, no. 1, pp. 020011. DOI: 10.1063/1.5084357.

  42. Polyanskiy A.M., Polyanskiy V.A., Frolova K.P., Yakovlev Yu.A. Hydrogen diagnostics of metals and alloys. Diagnostics, Resource and Mechanics of Materials and Structures, 2018, no. 6, pp. 37–50. DOI: 10.17804/2410-9908.2018.6.037-050. Available at: http://dream-journal.org/DREAM_Issue_6_2018_Polyanskiy_A.M._et_al._037_050.pdf

  43. GOST R 52890-2007. Non-destructive testing. Evaluation of stresses in material of pipelines by ultrasound method. General requirements. M., Standartnform Publ., 2009. (In Russian).

Д. А. Третьяков

АКУСТИЧЕСКАЯ АНИЗОТРОПИЯ НА РАЗЛИЧНЫХ СТАДИЯХ ДЕФОРМАЦИОННОГО ПРОЦЕССА В МЕТАЛЛАХ

Работа посвящена исследованию акустической анизотропии, возникающей при неупругом нагружении конструкций из промышленного проката. Результаты ультразвуковых измерений, проведенных на образцах из алюминиево-марганцевого сплава, указывают на существование нелинейной немонотонной зависимости акустической анизотропии от деформаций. Она не может быть объяснена в рамках используемой в теории акустопластичности нелинейно-упругой модели Мурнагана и полученного на ее основании соотношения, устанавливающего линейную связь акустической анизотропии с величиной пластических деформаций. По результатам сопоставления участков немонотонности полученной экспериментальной зависимости с характерными точками на кривой деформирования, выдвинуто предположение о том, что акустическая анизотропия является индикатором различных стадий деформационного процесса в металлах.

Благодарность: Исследование выполнено при финансовой поддержке стипендиальной программы компании Siemens.

Ключевые слова: акустическая анизотропия, пластические деформации, ультразвуковые волны, неразрушающий контроль, акустопластичность

Библиография:

1.  Biot M. A. The influence of initial stress on elastic waves // Journal of Applied Physics. – 1940. – Vol. 1, no. 8. – P. 522–530. – DOI: 10.1063/1.1712807.

2.  Truesdell C. General and exact theory of waves in finite elastic strain // Archive for Rational Mechanics and analysis. – 1961. – Vol. 8, no. 1. – P. 263–296. – DOI: 10.1007/BF00277444.

3.  Hughes D. S., Kelly J. L. Second-order elastic deformation of solids // Physical Review. – 1953. – Vol. 92, no. 5. – P. 1145–1159. – DOI: 10.1103/PhysRev.92.1145.

4.  Benson R. W., Raelson V. J. From ultrasonics to a new stress-analysis technique // Acoustoelasticity. Product Eng. – 1959. – Vol. 30, no. 29. – P. 56–59.

5.  Bobrenko V. M., Kutsenko A. N., Sheremetikov A. S. Acoustic tensometry. II - Methods and apparatus/survey // Soviet Journal of Nondestructive Testing. – 1981. – Vol. 16, no. 12. – P. 910–924.

6.  Бобренко В. М., Вангели М. С., Куценко А. Н. Акустические методы контроля напряженного состояния материала деталей машин. – Кишинев : Штиинца, 1981. – 148 с.

7.  Bobrenko V. M. Ultrasonic methods and devices for inspe6cting mechanical stresses // Soviet Journal of Nondestructive Testing. – 1984. – Vol. 19, no. 12. – P. 886–891.

8.  Theory underlying the determination of initial stresses from the results of ultrasonic measurements / A. N. Guz', F. G. Makhort, O. I. Gushcha, V. K. Lebedev // International Applied Mechanics. – 1971. – Vol. 7, no. 6. – P. 676–679. – DOI: 10.1007/BF00888415.

9.  Основы ультразвукового неразрушающего метода определения напряжений в твердых телах / А. Н. Гузь, Ф. Г. Махорт, О. И. Гуща, В. К. Лебедев. – Киев : Наукова Думка, 1974. – 106 с.

10. Гузь А. Н., Махорт Ф. Г., Гуща О. И. Введение в акустоупругость. – Киев : Наукова Думка, 1977. – 162 с.

11. Влияние технологической обработки высокопрочной стали на коэффициенты упругоакустической связи / В. Ф. Быстров, В. В. Гузовский, В. Ф. Золотов, Н. Е. Никитина // Дефектоскопия. – 1986. – № 7. – С. 92–93.

12. Повышение точности акустического метода определения остаточных напряжений в сварных конструкциях / В. В. Гузовский, В. Ф. Золотов, Г. П. Карзов, Б. А. Конюхов, Н. Е. Никитина // Судостроение. – 1988. – № 5. – С. 41–42.

13. Gushcha O. I., Makhort F. G. Acoustic method of determining biaxial residual stresses // International Applied Mechanics. – 1976. – Vol. 12, no. 10. – P. 1010–1013. – DOI: 10.1007/BF00885046.

14. Bobrenko V. M., Averbukh I. I. Ultrasonic method of measuring stresses in parts of threaded joints // Soviet Journal of Nondestructive Testing. – 1974. – Vol. 10, no. 1. – P. 59–66.

15. Никитина Н. Е. Акустоупругость. Опыт практического применения. – Н. Новгород : ТАЛАМ, 2005. – 208 с.

16. Nikitina N. E. The effect of the intrinsic anisotropy of material on the accuracy of stress measurement by the method of acoustoelasticity // Russian Journal of Nondestructive Testing. – 1996. – Vol. 32, no. 8. – P. 650–656.

17. Nikitina, N.E. Studies of the stressed state of welded parts by the acoustoelasticity method // Probl. Mashinostr. Nadezhnosti Mash. – 1999. – No. 4. – P. 70–73.

18. Nikitina N. E. Determination of plane stress states in structural materials by using elastic body waves // Russian Journal of Nondestructive Testing. – 1999. – Vol. 35, no. 1. – P. 41–46.

19. Kamyshev A. V., Nikitina N. E., Smirnov V. A. Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method // Russian Journal of Nondestructive Testing. – 2010. – Vol. 46, no. 3. – P. 189–193. – DOI: 10.1134/S106183091003006X.

20. Nikitina N. Y., Kamyshev A. V., Kazachek S. V. The application of the acoustoelasticity method for the determination of stresses in anisotropic pipe steels // Russian Journal of Nondestructive Testing. – 2015. – Vol. 51, no. 3. – P. 171–178. – DOI: 10.1134/S1061830915030079.

21. Use of acoustic anisotropy parameter for the analysis of damage accumulation in the area of SW111 during production and operation of steam generators PGV-1000 / A. V. Kamyshev, L. A. Pasmanik, V. A. Smirnov, V. S. Modestov, A. V. Pivkov // Transactions of the 9-th International scientific and technical conference Safety assurance of NPP with WWER : Scientific and Technical Electronic Edition. – 2015.

22. Pao Y. H. Theory of acoustoelasticity and acoustoplasticity // Solid mechanics research for quantitative non-destructive evaluation. – Springer, Dordrecht, 1987. – P. 257–273. – DOI: 10.1007/978-94-009-3523-5_16.

23. Pao Y. H., Wu T. T., Gamer U. Acoustoelastic birefringences in plastically deformed solids. Part I: Theory // Journal of Applied Mechanics. – 1991. – Vol. 58, no. 1. – P. 11–17. – DOI: 10.1115/1.2897137.

24. Wu T. T., Hirao M., Pao Y. H. Acoustoelastic birefringences in plastically deformed solids. Part II: Experiment //Journal of Applied Mechanics. – 1991. – Vol. 58, no. 1. – P. 18–23. – DOI: 10.1115/1.2897148.

25. Kobayashi M. Theoretical study of acoustoelastic effects caused by plastic anisotropy growth // International Journal of Plasticity. – 1987. – Vol. 3, no. 1. – P. 1–20. – DOI: 10.1016/0749-6419(87)90014-3.

26. Kobayashi M. Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation. Part I: Theory // International Journal of Plasticity. – 1998. – Vol. 14, no. 6. – P. 511–522. – DOI: 10.1016/S0749-6419(98)00005-9.

27. Kobayashi M. Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation. Part II: Experiment and simulation // International Journal of Plasticity. – 1998. – Vol. 14, no. 6. – P. 523–535. – DOI: 10.1016/S0749-6419(98)00006-0.

28. Murnaghan F. D. Finite deformations of an elastic solid // American Journal of Mathematics. – 1937. – Vol. 59, no. 2. – P. 235–260. – DOI: 10.2307/2371405.

29. Hirao M., Pao Y. H. Dependence of acoustoelastic birefringence on plastic strains in a beam // The Journal of the Acoustical Society of America. – 1985. – Vol. 77, no. 5. – P. 1659–1664. – DOI: 10.1121/1.391964.

30. Ghosh S., Li M., Gardiner D. A computational and experimental study of cold rolling of aluminum alloys with edge cracking // Journal of Manufacturing Science and Engineering. – 2004. – Vol. 126, no. 1. – P. 74–82. – DOI: 10.1115/1.1645877.

31. Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state / A. K. Belyaev, V. A. Polyanskiy, A. S. Semenov, D. A. Tretyakov, Y. A. Yakovlev // Procedia Structural Integrity. – 2017. – Vol. 6. – P. 201–207. – DOI: 10.1016/j.prostr.2017.11.031.

32. O'Neill B., Maev R. G. Acousto-elastic measurement of the fatigue damage in Waspaloy // Research in Nondestructive Evaluation. – 2006. – Vol. 17, no. 3. – P. 121–135. – DOI: 10.1080/09349840600787931.

33. The formation of edge cracks during rolling of metal sheet / H. Riedel, F. Andrieux, T. Walde, K. F. Karhausen // Steel Research International. – 2007. – Vol. 78, no. 10–11. – P. 818–824. – DOI: 10.1002/srin.200706291.

34. Ivanova Y., Partalin T., Pashkuleva D. Acoustic investigations of the steel samples deformation during the tensile // Russian Journal of Nondestructive Testing. – 2017. – Vol. 53, no. 1. – P. 39–50. – DOI: 10.1134/S1061830917010077.

35. Kurashkin K. V., Gonchar A. V. Variation of acoustic characteristics of an aluminum alloy during plastic deformation at room and subzero temperatures // AIP Conference Proceedings. – AIP Publishing, 2018. – Vol. 2053, no. 1. – P. 030030. – DOI: 10.1063/1.5084391.

36. Propagation of acoustic waves during the control of hydrogen-induced destruction of metals by the acoustoelastic effect / A. A. Alhimenko, A. K. Belyaev, A. I. Grishchenko, A. S. Semenov, D. A. Tretyakov, V. A. Polyanskiy, Y. A. Yakovlev // 2018 Days on Diffraction (DD). – IEEE, 2018. – P. 11–16. – DOI: 10.1109/DD.2018.8553151.

37. Acoustic anisotropy and dissolved hydrogen as an indicator of waves of plastic deformation / A. K. Belyaev, A. I. Grishchenko, V. A. Polyanskiy, A. S. Semenov, D. A. Tretyakov, L. V. Shtukin, D. G. Arseniev, Y. A. Yakovlev // 2017 Days on Diffraction (DD). – IEEE, 2017. – P. 39–44. – DOI: 10.1109/DD.2017.8167992.

38. Effect of Surface Layer Damage on Acoustic Anisotropy / A. S. Semenov, V. A. Polyanskii, L. V. Shtukin, D. A. Tretyakov // Journal of Applied Mechanics and Technical Physics. – 2018. – Vol. 59, no. 6. – P. 1136–1144. – DOI: 10.1134/S0021894418060202.

39. A study of hydrogen cracking in metals by the acoustoelasticity method / E. L. Alekseeva, A. K. Belyaev, L. A. Pasmanik, A. M. Polyanskiy, V. A. Polyanskiy, D. A. Tretiakov, Y. A. Yakovlev // AIP Conference Proceedings. – AIP Publishing, 2017. – Vol. 1915, no. 1. – P. 030001. – DOI: 10.1063/1.5017321.

40. Boundary Layer of Hydrogen Concentration under Plastic Deformation / A. K. Belyaev, D. E. Mansyrev, V. A. Polyanskiy, A. M. Polyanskiy, D. A. Tretyakov, Yu. A. Yakovlev // Diagnostics, Resource and Mechanics of Materials and Structures. – 2017. – No. 4. – P. 32–43. – DOI: 10.17804/2410-9908.2017.4.032-043. – URL: http://dream-journal.org/issues/2017-4/2017-4_167.html

41. Influence of the skin effect of plastic deformation on hydrogen accumulation in metals / V. A. Polyanskiy, A. K. Belyaev, Y. A. Yakovlev, A. M. Polyanskiy, D. A. Tretyakov // AIP Conference Proceedings. – AIP Publishing, 2018. – Vol. 2053, no. 1. – P. 020011. – DOI: 10.1063/1.5084357.

42. Hydrogen diagnostics of metals and alloys / A. M. Polyanskiy, V. A. Polyanskiy, K. P. Frolova, Yu. A. Yakovlev // Diagnostics, Resource and Mechanics of Materials and Structures. – 2018. – No. 6. – P. 37–50. – DOI: 10.17804/2410-9908.2018.6.037-050. – URL: http://dream-journal.org/DREAM_Issue_6_2018_Polyanskiy_A.M._et_al._037_050.pdf

43. ГОСТ Р. 52890–2007. Контроль неразрушающий. Акустический метод контроля напряжений в материале трубопроводов. Общие требования. – М. : Стандартинформ, 2009.  


PDF      

Библиографическая ссылка на статью

Tretyakov D. A. Acoustic Anisotropy at Different Stages of the Deformation Process in Metals // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 1. - P. 43-56. -
DOI: 10.17804/2410-9908.2020.1.043-056. -
URL: http://dream-journal.org/issues/2020-1/2020-1_260.html
(accessed: 10.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru