Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2019 Выпуск 6

2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

T. P. Tolmachev, V. P. Pilyugin, A. M. Patselov, T. M. Gapontseva, A. V. Plotnikov, R. V. Churbaev, A. V. Inozemtsev

FEATURES OF THE STRAIN-INDUCED DISSOLUTION AND STRUCTURE OF FRACTURE SURFACES IN Cu-Co ALLOYS

Cu–Co alloys containing various amounts of copper and cobalt have been synthesized by mechanical alloying at room temperature. The initial component ratio and the value of strain have an effect on the ultimate equilibrium solubility in the system, as well as on the fracture surfaces. The heterogeneity of fractures in the Cu-Co alloys is revealed after the fracture of the alloys with a predominant content of Co and Cu. An increase in strain leads to the formation of a uniformly distributed cleavage in a Cu-based alloy, as well as in the case of originally equiatomic alloys. In addition, the formation of a solid solution based on high-temperature modification of Co has been found.

Acknowledgements: The X-ray analysis was made in the laboratory of high-pressure physics, IMP UB RAS, Ekaterinburg. Electron microscopy was performed in the Nanotechnologies and Advanced Materials Testing Center, IMP UB RAS, Ekaterinburg. The study was performed under a state assignment and supported by UB RAS, project No. 18-10-2-24.

Keywords: mechanical alloying, severe plastic deformation, high-pressure torsion, X-ray diffraction analysis, scanning electron microscopy, supersaturated solid solution, immiscible Cu-Co system

Bibliography:

1.  Barabash O.M., Koval Yu.N. Struktura i svoystva metallov i splavov [Structure and Properties of Metals and Alloys]. Kiev, Naukova Dumka Publ., 1986, 599 p. (In Russian).

2.  Miedema A.R., De Chatel P.F., De Boer F.R. Cohesion in alloys – fundamentals of a semi-empirical model. Physica B, 1980, vol. 100, pp. 1–28. DOI: 10.1016/0378-4363(80)90054-6.

3.  Drits M.E., Budberg P.B., Burkhanov G.S., Drits A.M., and Panovko V.M. Svoystva elementov. Spravochnoe izdanie [Properties of Elements: A Reference Book, ed by M.E. Drits]. Moscow, Metallurgiya Publ., 1985. (In Russian).

4.  Zhang X., Atrens A. A TEM study on the microstructure of rapidly solidified Cu-Co alloys. Acta Metallurgica et Materialia, 1993, vol. 41, no. 2, pp. 563–568. DOI: 10.1016/0956-7151(93)90086-8.

5.  Bridgman P.W. Effects of High Shearing Stress Combined with High Hydrostatic Pressure. Physical Review, 1935, vol. 48, pp. 825–847. DOI: 10.1103/PhysRev.48.825.

6.  Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering: A, 2016, vol. 652, pp. 325–352. DOI: 10.1016/j.msea.2015.11.074.

7.  Glezer A., Kozlov E., Koneva N., Popova N., Kurzina I. Plastic Deformation of Nanostructured Materials, Boca Raton, CRC Press, 2017. DOI: 10.1201/9781315111964.

8.  Straumal B.B., Kilmametov A.R., Korneva A., Mazilkin A.A., Straumal P.B., Zieba P., Baretzky B. Phase transitions in Cu-based alloys under high pressure torsion. Journal of Alloys and Compounds, 2016, vol. 707, pp. 20–26. DOI: 10.1016/j.jallcom.2016.12.057.

9.  Mazilkin A.A., Straumal B.B., Kilmametov A.R., Boll T., Baretzky B., Kogtenkova O.A., Korneva A., Zięba P. Competition for impurity atoms between defects and solid solution during high pressure torsion. Scripta Materialia, 2019, vol. 173, pp. 46–50. DOI: 10.1016/j.scriptamat.2019.08.001.

10. Bachmaier A., Aboulfadl H., Pfaff M., Mücklich F., Motz C. Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography. Materials Characterization, 2015, vol. 100, pp. 178–191. DOI: 10.1016/j.matchar.2014.12.022.

11. Bachmaier A., Krenn H., Knoll P., Aboulfadl H., Pippan R. Tailoring the magnetic properties of nanocrystalline Cu-Co alloys prepared by high-pressure torsion and isothermal annealing. Journal of Alloys and Compounds, 2017, vol. 725, pp. 744–749. DOI: 10.1016/j.jallcom.2017.07.200.

12. Tolmachev T.P., Pilyugin V.P., Patselov A.M., Ancharov A.I., Inozemtsev A.V. Mechanical Alloying and Fracture Features of Non-Equilibrium Cu-Co Alloys. Diagnostics, Resource and Mechanics of materials and structures, 2018, iss. 6, pp. 18–26. DOI: 10.17804/2410-9908.2018.6.018-026. URL: http://dream-journal.org/issues/2018-6/2018-6_235.html (accessed: 05.11.2019).

13. Tonkov, E.Yu. Fazovye diagrammy elementov pri vysokom davlenii [Elements Phase Diagrams under High Pressure]. Moscow, Nauka Publ., 1979, p. 192. (In Russian).

Т. П. Толмачев, В. П. Пилюгин, А. М. Пацелов, Т. М. Гапонцева, А. В. Плотников, Р. В. Чурбаев, А. В. Иноземцев

ОСОБЕННОСТИ ДЕФОРМАЦИОННОГО РАСТВОРЕНИЯ И СТРОЕНИЯ ПОВЕРХНОСТЕЙ РАЗРУШЕНИЯ СПЛАВОВ СИСТЕМЫ Cu-Co

Методом механосплавления синтезированы образцы сплавов системы Cu-Co с различным содержанием меди и кобальта. В зависимости от исходного соотношения компонентов и степени деформации установлен факт изменения предельной равновесной растворимости в данной системе, а также полиморфное превращение в фазу с гранецентрированной кубической кристаллической решеткой. Фазовый переход обусловлен деформационно-индуцированным растворением атомов меди в кобальтовой матрице. Деформационной растворимости кобальта соответствует характерный тип поверхности излома.

Благодарности: Работа выполнена при поддержке проекта УрО РАН (проект № 18-10-2-24) и в рамках государственного задания

Ключевые слова: механическое сплавление, большие пластические деформации, кручение под высоким давлением, рентгеновская дифрактометрия, сканирующая электронная микроскопия, пересыщенный твердый раствор, система ограниченной растворимости Cu-Co

Библиография:

1.  Барабаш О. М., Коваль Ю. Н. Структура и свойства металлов и сплавов. – Киев : Наукова думка, 1986. – 599 с.

2.  Miedema A. R., De Chatel P. F., De Boer F. R. Cohesion in alloys – fundamentals of a semi-empirical model // Physica B. – 1980. – Vol. 100. – P. 1–28. – DOI: 10.1016/0378-4363(80)90054-6.

3.  Свойства элементов : справочник / М. Е. Дриц, П. Б. Будберг, Г. С. Бурханов, А. М. Дриц, В. М. Пановко / под ред. М. Е. Дрица. – М. : Металлургия, 1985 – 672 с.

4.  Zhang X., Atrens A. A TEM study on the microstructure of rapidly solidified Cu-Co alloys // Acta Metallurgica et Materialia. – 1993. – Vol. 41, no. 2. – P. 563–568. – DOI: 10.1016/0956-7151(93)90086-8.

5.  Bridgman P. W. Effects of High Shearing Stress Combined with High Hydrostatic Pressure // Physical Review. – 1935. – Vol. 48. – P. 825–847. – DOI: 10.1103/PhysRev.48.825.

6.  Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988 // Materials Science and Engineering: A. – 2016. – Vol. 652. – P. 325–352. – DOI: 10.1016/j.msea.2015.11.074.

7.  Основы пластической деформации наноструктурных материалов / А. М. Глезер, Э. В. Козлов, Н. А. Конева, Н. А. Попова, И. А. Курзина / под ред. А. М. Глезера – М. : Физматлит, 2016. – 304 с. – ISBN: 978-5-9221-1689-3.

8.  Phase transitions in Cu-based alloys under high pressure torsion / B. B. Straumal, A. R. Kilmametov, A. Korneva, A. A. Mazilkin, P. B. Straumal, P. Zieba, B. Baretzky // Journal of Alloys and Compounds. – 2016. – Vol. 707. – P. 20–26. – DOI: 10.1016/j.jallcom.2016.12.057.

9.  Competition for impurity atoms between defects and solid solution during high pressure torsion / A. A. Mazilkin, B. B. Straumal, A. R. Kilmametov, T. Boll, B. Baretzky, O. A. Kogtenkova, A. Korneva, P. Zięba // Scripta Materialia. – 2019. – Vol. 173. – P. 46–50. – DOI: 10.1016/j.scriptamat.2019.08.001.

10. Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography / A. Bachmaier, H. Aboulfadl, M. Pfaff, F. Mücklich, C. Motz // Materials Characterization. – 2015. – Vol. 100. – P. 178–191. – DOI: 10.1016/j.matchar.2014.12.022.

11. Tailoring the magnetic properties of nanocrystalline Cu-Co alloys prepared by high-pressure torsion and isothermal annealing / A. Bachmaier, H. Krenn, P. Knoll, H. Aboulfadl, R. Pippan // Journal of Alloys and Compounds. – 2017. – Vol. 725. – P. 744–749. – DOI: 10.1016/j.jallcom.2017.07.200.

12. Mechanical Alloying and Fracture Features of Non-Equilibrium Cu-Co Alloys / T. P. Tolmachev, V. P. Pilyugin, A. M. Patselov, A. I. Ancharov, A. V. Inozemtsev // Diagnostics, Resource and Mechanics of materials and structures. – 2018. – Iss. 6. – P. 18–26. – DOI: 10.17804/2410-9908.2018.6.018-026. – URL: http://dream-journal.org/issues/2018-6/2018-6_235.html (accessed: 05.11.2019).

13. Тонков Е. Ю. Фазовые диаграммы элементов при высоком давлении. – М. : Наука, Главная редакция физико-математической литературы, 1979. – 192 с.

PDF        

 

импакт-фактор
РИНЦ 0.42

 

МРДМК 2021
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2021, www.imach.uran.ru