Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2019 Выпуск 5

Все выпуски
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

K. P. Frolova, E. N. Vilchevskaya

COMPARISON OF THE YIELD FUNCTIONS FOR MICROPOLAR MEDIA USING A CYLINDRICAL SAMPLE MODEL

DOI: 10.17804/2410-9908.2019.5.006-022

The article discusses different yield functions extended to the case of micropolar media in order to investigate the effect of local plasticity in metals. The paper is concerned with the inhomogeneous stress-strain state obtained within the frame of the micropolar continuum approach for a cylindrical specimen under distributed couple stress on its lateral surface. The case corresponding to specimen tension is considered. Plastic strains prove to arise near the border of the specimen, while the material continues to behave elastically. According to the results, it is necessary to take into account couple stresses to clarify what happens in the area near the border when the size of this area is comparable to the size of the structure inhomogeneity.

Keywords: yield function for a micropolar medium, size effects, pseudo-Cosserat continuum, couple stress

Bibliography:

  1. Fizicheskaya mezomekhanika i kompyuternoe konstruirovanie [Panin V.E., ed., Physical Mesomechanics and the Computer Design of Materials]. Novosibirsk, Nauka Publ., 1995. (In Russian).

  2. Panin V.E., Grinyaev Yu.V., Psakhye S.G. Two decades of developments in physical mesomechanics: achievements, problems and prospects. Fizicheskaya Mezomekhanika, 2004, vol. 7, no. 4, pp. 93–113. (In Russian).

  3. Tyumentsev A.N., Korotayev A.D., Pinzhin Yu.P. Highly Defective Structural States, Fields of Local Internal Stresses and Cooperative Mesoscopic Mechanisms of Crystal Deformation and Reorientation in Nanostructured Metal Materials. Phys. Mesomech., 2004, vol. 7, nos. 3–4, pp. 31–46.

  4. Panin V.E., Panin A.V. Effect of the Surface Layer in a Solid under. Fizicheskaya Mezomekhanika, 2005, vol. 8, nos. 5–6, pp. 7–14. (In Russian).

  5. Kuznetsov P.V. and Panin V.E., Direct Observation of Flows of Defects and of nm-Range Localization of Deformation on Duralumin Surface with the Aid of Scanning Tunnel and Atom Force Microscopes. Phys. Mesomech., 2000, vol. 3, no. 2, pp. 85–91.

  6. Panin V.E., Yelsukova T.F., Popkova Yu.F., Pochivalov Yu.I. Role of curvature of the surface layer of titanium polycrystals in generation and development of fatigue fracture. Problems of Atomic Science and Technology, 2015, vol. 96, no. 2, pp. 148–153. (In Russian).

  7. Panin V.E., Egorushkin V.E., Panin A.V., Moiseenko D.D. On the nature of plastic strain localization in solids. Technical Physics, 2017, vol. 52, iss. 8, pp 1024–1030. DOI: 10.1134/S1063784207080105.

  8. Eremeyev V.A., Lebedev L.P., Altenbach H. Foundations of Micropolar Mechanics, Springer Science & Business Media, 2012.

  9. Eringen A.C. Theory of micropolar elasticity. In: Microcontinuum Field Theories, Springer, New York, NY, 1999, pp. 101–248. DOI: 10.1007/978-1-4612-0555-5_5.

  10. Mindlin R.D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 1964, vol. 16, no. 1, pp. 51–78. DOI: 10.1007/BF00248490.

  11. Mindlin R.D., Tiersten H.F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and analysis, 1962, vol. 11, no. 1, pp. 415–448.

  12. Kozlov E.V., Koneva N.A., and Zhdanov A.N. Structure and Strain Resistance of FCC Ultrafine-Grained Metals and Alloys. Fizicheskaya Mezomekhanika, 2004, vol. 7, no. 4, pp. 93–113. (In Russian).

  13. Forest S., Sievert R. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 2003, vol. 160, nos. 1–2, pp. 71–111. DOI: 10.1007/s00707-002-0975-0.

  14. Smolin I.Yu. The use of the micropolar models for the description of the plastic deformations at the mesoscale level. Vestnik Permskogo natsyonalnogo issledovatelskogo politekhnicheskogo universiteta: Mekhanika, 2006, no. 14, pp. 189–205. (In Russian).

  15. Lippmann H. Eine Cosserat-Theorie des plastischen Fließens. Acta Mechanica, 1969, vol. 8, nos. 3–4, pp. 255–284. DOI: 10.1007/BF01182264.

  16. Sawczuk A. On the yielding of Cosserat continua. Archives of Mechanics, 1967, vol. 19, no. 3, pp. 471–480.

  17. Besdo D. Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums. Acta Mechanica, 1974, vol. 20, nos. 1–2, pp. 105–131. DOI: 10.1007/BF01374965.

  18. Mühlhaus H.B., Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987, vol. 37, no. 3, pp. 271–283. DOI: 10.1680/geot.1987.37.3.271.

  19. De Borst R. Simulation of strain localization: a reappraisal of the Cosserat continuum. Engineering Computations, 1991, vol. 8, no. 4, pp. 317–332. DOI: 10.1108/eb023842.

  20. De Borst R. A generalisation of J2-flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering, 1993, vol. 103, no. 3, pp. 347–362. DOI: 10.1016/0045-7825(93)90127-J.

  21. Lippmann H. Cosserat Plasticity and Plastic Spin. Appl. Mech. Rev., 1995, vol. 48, no. 11. DOI: 10.1115/1.3005091.

  22. Altenbach H., Eremeyev V.A. Strain rate tensors and constitutive equations of inelastic micropolar materials. International Journal of Plasticity, 2014, vol. 63, pp. 3–17. DOI: 10.1016/j.ijplas.2014.05.009.

  23. Dietsche A., Steinmann P., Willam K. Micropolar elastoplasticity and its role in localization. International Journal of Plasticity, 1993, vol. 9, no. 7, pp. 813–831. DOI: 10.1016/0749-6419(93)90053-S.

  24. Steinmann P. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. International Journal of Solids and Structures, 1994, vol. 31, no. 8, pp. 1063–1084. DOI: 10.1016/0020-7683(94)90164-3.

  25. Kachanov L.M. Osnovy teorii plastichnosti [Fundamentals of Plasticity Theory]. Moscow, Nauka Publ., 1969, 420 p. (In Russian).

  26. Mase G.E. Theory and Problems of Continuum, McGraw-Hill Book Company, New York, 1970.

  27. Vardoulakis I. Shear-banding and liquefaction in granular materials on the basis of a Cosserat continuum theory. Ingenieur-Archiv., 1989, vol. 59, no. 2, pp. 106–113. DOI: 10.1007/BF00538364.

  28. Salehi S.H., Salehi M. Numerical investigation of nanoindentation size effect using micropolar theory. Acta Mechanica, 2014, vol. 225, no. 12, pp. 3365–3376. DOI: 10.1007/s00707-014-1116-2.

  29. Neuber H. Über Probleme der Spannungskonzentration im Cosserat-Körper. Acta Mechanica, 1966, vol. 2, no. 1, pp. 48–69. DOI: 10.1007/BF01176729.

  30. Groen A.E., Schellekens J.C.J., De Borst R. Three-dimensional finite element studies of failure in soil bodies using a Cosserat continuum. In: Computer Methods and Advances in Geomechanics: Proceedings of the 8th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, West Virginia, USA, 22–28 May 1994, Balkema, 1994, pp. 581–586.

  31. Frolova K., Vilchevskaya E., Polyanskiy V., Alekseeva E. Modelling of a Hydrogen Saturated Layer Within the Micropolar Approach. In: New Achievements in Continuum Mechanics and Thermodynamics, Springer, Cham, 2019, pp. 117–128. DOI: 10.1007/978-3-030-13307-8_9.

  32. Adomeit G. Determination of elastic constants of a structured material. In: Mechanics of Generalized Continua, Springer, Berlin, Heidelberg, 1968, pp. 80–82. DOI: 10.1007/978-3-662-30257-6_8.

  33. Lakes R.S. Size effects and micromechanics of a porous solid. Journal of Materials Science, 1983, vol. 18, no. 9, pp. 2572–2580. DOI: 10.1007/BF00547573.

  34. Yang J.F.C., Lakes R.S. Transient study of couple stress effects in compact bone: torsion. Journal of Biomechanical Engineering, 1981, vol. 103, no. 4, pp. 275–279.

  35. Alekseeva E., Belyaev A., Zegzhda A., Polyanskiy A., Polyanskiy V., Frolova K., Yakovlev Y. Boundary layer influence on the distribution of hydrogen concentrations during hydrogen-induced cracking test of steels. Diagnostics, Resource and Mechanics of materials and structures, 2018, iss. 3, pp. 43–57. DOI: 10.17804/2410-9908.2018.3.043-057.

  36. Belyaev A.K., Polyanskiy V.A., Yakovlev Y.A., Mansyrev D.E., Polyanskiy A.M. Surface effect of the waves of plastic deformation and hydrogen distribution in metals. In: Days on Diffraction: IEEE, 2017, pp. 45–50. DOI: 10.1109/DD.2017.8167993.

  37. Polyanskiy V.A., Belyaev A.K. Alekseeva E.L., Polyanskiy A.M., Tretyakov D.A., Yakovlev Yu.A. Phenomenon of skin effect in metals due to hydrogen absorption. Continuum Mech. Thermodyn., 2019, vol. 31, iss. 6, pp. 1–15. DOI: 10.1007/s00161-019-00839-2.

  38. Martinsson A., Sandstrom R. Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging. Journal of Materials Science, 2012, vol. 47, no. 19, pp. 6768–6776. DOI: 10.1007/s10853-012-6592-y.

К. П. Фролова, Е. Н. Вильчевская

СРАВНЕНИЕ УСЛОВИЙ ПЛАСТИЧНОСТИ ДЛЯ МИКРОПОЛЯРНЫХ СРЕД НА ПРИМЕРЕ МОДЕЛИ ЦИЛИНДРИЧЕСКОГО ОБРАЗЦА

В статье рассматриваются условия пластичности, обобщенные различными способами на случай микрополярных сред, с целью исследования эффекта локализации пластических деформаций в металлах. В качестве примера в статье рассматривается полученное в рамках микрополярной теории сплошных сред неоднородное напряженно-деформированное состояние цилиндрического образца, на боковой поверхности которого задан распределенный момент и к торцам которого приложено растягивающее усилие. Оказывается, что пластическое течение инициируется непосредственно у границы образца, в то время как материал в целом продолжает вести себя упруго. Результаты свидетельствуют о необходимости учета моментных взаимодействий между частицами среды при рассмотрении приграничной области, размеры которой сопоставимы с характерным размером структурной неоднородности материала.

Ключевые слова: критерий текучести для микрополярной среды, размерный эффект, псевдоконтинуум Коссера, моментное взаимодействие

Библиография:

1.   Физическая мезомеханика и компьютерное конструирование материалов / отв. ред. В. Е. Панин. – Новосибирск, «Наука», 1995.

2.   Панин В. Е., Гриняев Ю. В., Псахье С. Г. Физическая мезомеханика: достижения за два десятилетия развития, проблемы и перспективы // Физическая мезомеханика. – 2004. – Vol. 7, no. 4. – С. 93–113.

3.   Tyumentsev A. N., Korotayev A. D., Pinzhin Yu. P. Highly Defective Structural States, Fields of Local Internal Stresses and Cooperative Mesoscopic Mechanisms of Crystal Deformation and Reorientation in Nanostructured Metal Materials // Phys. Mesomech. – 2004. – Vol. 7, nos. 3–4. – P. 31–46.

5.   Панин В. Е., Панин А. В. Эффект поверхностного слоя в деформируемом твердом теле // Физическая мезомеханика. – 2005. – Vol. 8, no. 5. – С. 7–15.

6.   Kuznetsov P. V. and Panin V. E. Direct Observation of Flows of Defects and of nm-Range Localization of Deformation on Duralumin Surface with the Aid of Scanning Tunnel and Atom Force Microscopes // Phys. Mesomech. – 2000. – Vol. 3, no. 2. – P. 85–91.

7.   Роль локальной кривизны поверхностного слоя поликристаллов титана в зарождении и развитии усталостного разрушения / В. Е. Панин, Т. Ф. Елсукова, Ю. Ф. Попкова, Ю. И. Почивалов // Вопросы атомной науки и техники. – 2015. – Vol. 96, no. 2. – С. 148–153.

8.   On the nature of plastic strain localization in solids. / V. E. Panin, V. E. Egorushkin, A. V. Panin, D. D. Moiseenko // Technical Physics. – 2017. – Vol. 52, iss. 8. – P. 1024–1030. – DOI: 10.1134/S1063784207080105.

9.   Eremeyev V. A., Lebedev L. P., Altenbach H. Foundations of Micropolar Mechanics. – Springer Science & Business Media, 2012.

10. Eringen A. C. Theory of micropolar elasticity // Microcontinuum field theories. – Springer, New York, NY, 1999. – P. 101–248. – DOI: 10.1007/978-1-4612-0555-5_5.

11. Mindlin R. D. Micro-structure in linear elasticity // Archive for Rational Mechanics and Analysis. – 1964. – Vol. 16, no. 1. – P. 51–78. – DOI: 10.1007/BF00248490.

12. Mindlin R. D., Tiersten H. F. Effects of couple-stresses in linear elasticity // Archive for Rational Mechanics and analysis. – 1962. – Vol. 11, no. 1. – P. 415–448.

13. Cтруктура и cопротивление деформированию ГЦК ультрамелкозернистых металлов и сплавов / Э. В. Козлов, Н. А. Конева, А. Н. Жданов, Н. А. Попова, Ю. Ф. Иванов // Физическая мезомеханика. – 2004. – Vol. 7, no. 4. – P. 93–113.

14. Forest S., Sievert R. Elastoviscoplastic constitutive frameworks for generalized continua // Acta Mechanica. – 2003. – Vol. 160, nos. 1–2. – P. 71–111. – DOI: 10.1007/s00707-002-0975-0.

15. Смолин И. Ю. Использование микрополярных моделей для описания пластического деформирования на мезоуровне // Вестник Пермского национального исследовательского политехнического университета. Механика. – 2006. – № 14. – С. 189–205.

16. Lippmann H. Eine Cosserat-Theorie des plastischen Fließens // Acta Mechanica. – 1969. – Vol. 8, nos. 3–4. – P. 255–284. – DOI: 10.1007/BF01182264.

17. Sawczuk A. On the yielding of Cosserat continua // Archives of Mechanics. – 1967. – Vol. 19, no. 3. – P. 471–480.

18. Besdo D. Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums // Acta Mechanica. – 1974. – Vol. 20, nos. 1–2. – P. 105–131. – DOI: 10.1007/BF01374965.

19. Mühlhaus H. B., Vardoulakis I. The thickness of shear bands in granular materials // Geotechnique. – 1987. – Vol. 37, no. 3. – P. 271–283. – DOI: 10.1680/geot.1987.37.3.271.

20. De Borst R. Simulation of strain localization: a reappraisal of the Cosserat continuum // Engineering computations. – 1991. – Vol. 8, no. 4. – P. 317–332. – DOI: 10.1108/eb023842.

20. De Borst R. A generalisation of J2-flow theory for polar continua // Computer Methods in Applied Mechanics and Engineering. – 1993. – Vol. 103, no. 3. – P. 347–362. – DOI: 10.1016/0045-7825(93)90127-J.

21. Lippmann H. Cosserat Plasticity and Plastic Spin // Appl. Mech. Rev. – 1995. – Vol. 48, no. 11. – DOI: 10.1115/1.3005091.

22. Altenbach H., Eremeyev V. A. Strain rate tensors and constitutive equations of inelastic micropolar materials // International Journal of Plasticity. – 2014. – Vol. 63. – P. 3–17. – DOI: 10.1016/j.ijplas.2014.05.009.

23. Dietsche A., Steinmann P., Willam K. Micropolar elastoplasticity and its role in localization // International Journal of Plasticity. – 1993. – Vol. 9, no. 7. – P. 813–831. – DOI: 10.1016/0749-6419(93)90053-S.

24. Steinmann P. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity // International Journal of Solids and Structures. – 1994. – Vol. 31, no. 8. – P. 1063–1084. – DOI: 10.1016/0020-7683(94)90164-3.

25. Качанов Л. М. Основы теории пластичности. – М : Наука, 1969. – 420 с.

26. Мейз Дж. Теория и задачи механики сплошных сред : учебник. – М. : Мир, 1974. – 319 с.

27. Vardoulakis I. Shear-banding and liquefaction in granular materials on the basis of a Cosserat continuum theory // Ingenieur-Archiv. – 1989. – Vol. 59, no. 2. – P. 106–113. – DOI: 10.1007/BF00538364.

28. Salehi S. H., Salehi M. Numerical investigation of nanoindentation size effect using micropolar theory // Acta Mechanica. – 2014. – Vol. 225, no. 12. – P. 3365–3376. – DOI: 10.1007/s00707-014-1116-2.

29. Neuber H. Über Probleme der Spannungskonzentration im Cosserat-Körper // Acta Mechanica. – 1966. – Vol. 2, no. 1. – P. 48–69. – DOI: 10.1007/BF01176729.

30. Groen A. E., Schellekens J. C. J., De Borst R. Three-dimensional finite element studies of failure in soil bodies using a Cosserat continuum // Computer Methods and Advances in Geomechanics : Proceedings of the 8th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, West Virginia, USA, 22–28 May 1994. – Balkema, 1994. – P. 581–586.

31. Modelling of a Hydrogen Saturated Layer Within the Micropolar Approach / K. Frolova, E. Vilchevskaya, V. Polyanskiy, E. Alekseeva // New Achievements in Continuum Mechanics and Thermodynamics. – Springer, Cham, 2019. – P. 117–128. – DOI: 10.1007/978-3-030-13307-8_9.

32. Adomeit G. Determination of elastic constants of a structured material // Mechanics of Generalized Continua. – 1968. – P. 80–82. – DOI: 10.1007/978-3-662-30257-6_8.

33. Lakes R. S. Size effects and micromechanics of a porous solid // Journal of Materials Science. – 1983. – Vol. 18, no. 9. – P. 2572–2580. – DOI: 10.1007/BF00547573.

34. Yang J. F. C., Lakes R. S. Transient study of couple stress effects in compact bone: torsion // Journal of biomechanical engineering. – 1981. – Vol. 103, no. 4. – P. 275–279.

35. Boundary layer influence on the distribution of hydrogen concentrations during hydrogen-induced cracking test of steels / E. Alekseeva, A. Belyaev, A. Zegzhda, A. Polyanskiy, V. Polyanskiy, K. Frolova, Y. Yakovlev // Diagnostics, Resource and Mechanics of materials and structures. – 2018. – Iss. 3. – P. 43–57. – DOI: 10.17804/2410-9908.2018.3.043-057.

36. Surface effect of the waves of plastic deformation and hydrogen distribution in metals / A. K. Belyaev, V. A. Polyanskiy, Y. A. Yakovlev, D. E. Mansyrev, A. M. Polyanskiy // Days on Diffraction : IEEE, 2017. – P. 45–50. – DOI: 10.1109/DD.2017.8167993.

37. Phenomenon of skin effect in metals due to hydrogen absorption / V. A. Polyanskiy, A. K. Belyaev, E. L. Alekseeva, A. M. Polyanskiy, D. A. Tretyakov, Yu. A. Yakovlev // Continuum Mech. Thermodyn. – 2019. – Vol. 31, iss. 6. – P. 1–15. – DOI: 10.1007/s00161-019-00839-2.

38. Martinsson A., Sandstrom R. Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging // Journal of Materials Science. – 2012. – Vol. 47, no. 19. – P. 6768–6776. – DOI: 10.1007/s10853-012-6592-y.

PDF      

Библиографическая ссылка на статью

Frolova K. P., Vilchevskaya E. N. Comparison of the Yield Functions for Micropolar Media Using a Cylindrical Sample Model // Diagnostics, Resource and Mechanics of materials and structures. - 2019. - Iss. 5. - P. 6-22. -
DOI: 10.17804/2410-9908.2019.5.006-022. -
URL: http://dream-journal.org/issues/2019-5/2019-5_270.html
(accessed: 21.11.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru