V. D. Solovei
VARIATIONAL PRINCIPLE FOR THE VELOCITIES OF PARTICLES OF A VISCOPLASTIC STRIP UNDER ROLLING
DOI: 10.17804/2410-9908.2019.1.064-069 Plane flow of a viscoplastic strip under rolling is considered. Tangential friction stresses at the flow–roll interface and at contact of the flow region with the rigid strip ends are specified approximately by the Prandtl friction law. A variational principle is proved for particle velocities with account of the convection flow.
Keywords: viscoplastic strip rolling, stationary flow of a strip, convective flow, variational principle, local potential References:
1. Ilyushin A.A. The Deformation of a Visco-Plastic Solid. Uchenye Zapiski Mosk. Gos. Univ., Ser. 2, 1940, vol. 39, pp. 3–81. (In Russian).
2. Моsolov P.P., Miasnikov V.P. Variational methods in the theory of the fluidity of a viscous-plastic medium. Journal of Applied Mathematics and Mechanics, 1965, vol. 29, no. 3, pp. 545–577. DOI: 10.1016/0021-8928(65)90063-8.
3. Freydental A., Geyringer Kh. Matematicheskie teorii neuprugoy sploshnoy sredy [Freudenthal Alfred M., Geiringer Hilda. The Mathematical Theories of the Inelastic Continuum. In: Handbuch der Physik, Bd.VI, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1958, pp. 229–433]. Moscow, Fizmatgiz Publ., 1962, 432 p. (In Russian).
4. Kolmogorov V.L. Mekhanika obrabotki metallov davleniem [Mechanics of Metal Forming]. Moscow, Metallurgiya Publ., 1986, 688 p. (In Russian).
5. Alekseev A.E. Nonlinear laws of dry friction in contact problems of linear theory of elasticity. Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, iss. 4, pp. 622–629. DOI: 10.1023/A:1016018118184.
В. Д. Соловей
ВАРИАЦИОННЫЙ ПРИНЦИП ДЛЯ СКОРОСТЕЙ ЧАСТИЦ ВЯЗКОПЛАСТИЧЕСКОЙ ПОЛОСЫ ПРИ ПРОКАТКЕ
Рассматривается плоское течение вязкопластической полосы при прокатке. Касательные напряжения трения на границах контакта области течения с валком и с жесткими концами полосы задаются приближенно с помощью закона трения Прандтля. Доказан вариационный принцип для скоростей частиц с учетом конвективного течения.
Ключевые слова: прокатка вязкопластической полосы, стационарное течение полосы, конвективное течение, вариационный принцип, локальный потенциал Библиография:
1. Ильюшин А. А. Деформация вязко-пластичного тела // Ученые записки МГУ. Механика. – 1940. – Вып. 39. – С. 3–81.
2. Моsolov P. P., Miasnikov V. P. Variational methods in the theory of the fluidity of a viscous-plastic medium // Journal of Applied Mathematics and Mechanics. – 1965. – Vol. 29, no. 3. – P. 545–577. – DOI: 10.1016/0021-8928(65)90063-8.
3. Фрейденталь А., Гейрингер Х. Математические теории неупругой сплошной среды. – М. : Физматгиз, 1962.
4. Колмогоров В. Л. Механика обработки металлов давлением. – М. : Металлургия, 1986.
5. Alekseev A. E. Nonlinear laws of dry friction in contact problems of linear theory of elasticity // Journal of Applied Mechanics and Technical Physics. – 2002. – Vol. 43, iss. 4. – P. 622–629. – DOI: 10.1023/A:1016018118184.
Библиографическая ссылка на статью
Solovei V. D. Variational Principle for the Velocities of Particles of a Viscoplastic Strip under Rolling // Diagnostics, Resource and Mechanics of materials and structures. -
2019. - Iss. 1. - P. 64-69. - DOI: 10.17804/2410-9908.2019.1.064-069. -
URL: http://dream-journal.org/issues/2019-1/2019-1_250.html (accessed: 30.12.2024).
|