Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 2

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. V. Privalova, E. Yu. Prosviryakov

EXACT SOLUTIONS FOR A COUETTE–HIEMENZ CREEPING CONVECTIVE FLOW WITH LINEAR TEMPERATURE DISTRIBUTION ON THE UPPER BOUNDARY

DOI: 10.17804/2410-9908.2018.2.092-109

A new exact solution is found for the plane convection of a viscous incompressible fluid describable by the Oberbeck–Boussinesq equation system in an infinite thin layer. The solution of the boundary-value problem is obtained for the fluid flow arising in the case of inhomogeneous velocity distribution and a linear heat source at the upper boundary of an infinite layer of a viscous incompressible fluid. A creeping convective flow is studied by the generalization of the isothermal class of the Hiemenz exact solutions. The temperature and pressure fields are linear with respect to the horizontal coordinate in this class of solutions. The analysis of polynomial solutions describing natural fluid convection in the Stokes approximation is presented. The paper shows the existence of points where the velocity field vanishes inside the fluid layer. These points are termed stagnation points and indicate the presence of counterflows in the fluid. Similar investigations are carried out for the temperature and pressure fields. The isotherms and isobars are shown to be always locally parabolic or hyperbolic, i.e. to have an infinitely distant point, due to the structure of the discussed exact solution.

Keywords: counterflow, exact solution, Couette flow, Hiemenz flow, Oberbeck–Boussinesq equation, Stokes approximation, stagnation point, stratification

References:

1.Couette M. Etudes sur le frottement des liquids. Ann. Chim. Phys., 1890, vol. 21, pp. 433–510.

2.Landau L.D., Lifshitz E.M. Course of Theoretical Physics. Vol. 6. Fluid mechanics. Pergamon Press, Oxford, 1987, 539 р.

3.Drazin P.G. The Navier–Stokes equations: A classification of flows and exact solutions. Cambridge, Cambridge Univ. Press, 2006, 196 p.

4.Boronin S.A. Stability of the plane Couette flow of a disperse medium with a finite volume fraction of the particles. Fluid Dynamics, 2011, vol. 46, pp. 64–71.

DOI: 10.1134/S0015462811010078.

5.Georgiyevskii D.V. Generalized Joseph Estimates of Stability of Plane Shear Flows with Scalar Nonlinearity. Bulletin of the Russian Academy of Sciences: Physics, 2011, vol. 75, no. 1, pp. 149–152. DOI: 10.3103/S1062873810121044.

6.Zhuk V.I., Protsenko I.G. Asymptotic model for the evolution of perturbations in the plane Couette-Poiseuille flow. Doklady Mathematics, 2006, vol. 74, no. 3, pp. 896–900. DOI: 10.1134/S1064562406060287.

7.Rudyak V.Ya., Isakov E.B., Bord E.G. Instability of plane Couette flow of two-phase liquids. Technical Physics Letters, 1998, vol. 24, pp. 199–200. DOI: 10.1134/1.1262051.

8.Troshkin O.V. Nonlinear stability of Couette, Poiseuille and Kolmogorov plane channel flows. Doklady Mathematics, 2012, vol. 85,  no. 2, pp. 181–185. DOI: 10.1134/S1064562412020068.

9.Shalybkov D.A. Hydrodynamic and hydromagnetic stability of the Couette flow. Physics-Uspekhi, 2009, vol. 52, no. 9, pp. 915–935. DOI: 10.3367/UFNe.0179.200909d.0971.

10.Abramyan A.K., Mirantsev L.V., Kuchmin A.Yu. Modeling of processes at Couette simple fluid flow in flat nano-scopic canal. Matematicheskoe Modelirovanie, 2012, vol. 24, no. 4, pp. 3–21 (In Russian).

11.Aristov S.N., Prosviryakov E.Yu. Nonuniform convective Couette flow. Fluid Dynamics, 2016, vol. 51, pp. 581–587. DOI: 10.1134/S001546281605001X.

12.Aristov S.N., Prosviryakov E.Yu. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293. DOI: 10.1134/S0040579516030027.

13.Babkin V. A. Plane Turbulent Couette Flow. Journal of Engineering Physics and Thermophysics, vol. 76, iss. 6, pp. 1251–1254. DOI: 10.1023/B:JOEP.0000012026.19646.c6.

14.Belyaeva N.A., Kuznetsov K.P. Analysis of a nonlinear dynamic model of the Couette flow for structured liquid in a flat gap. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 2 (27), pp. 85–92. DOI: 10.14498/vsgtu1018. (In Russian).

15.Gavrilenko S.L., Shil'ko S.V., Vasin R.A. Characteristics of a viscoplastic material in the couette flow. Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, iss. 3, pp 439–444. DOI: 10.1023/A:1015378622918.

16.Kudinov V.A., Kudinov I.V. Reception of exact analytical decisions of the hyperbolic equations of movement at a dispersed current of Kuetta. Izvestiya Rossiyskoy Akademii Nauk. Energetika, 2012, no. 1, pp. 119–133 (In Russian).

17.Malyshev V.A., Manita A.D. Stochastic Micromodel of the Couette Flow. Theory of Probability & its Applications, 2009, vol. 53, iss. 4, pp. 716–727. DOI: 10.1137/S0040585X97983924.

18.Pukhnachev V.V., Pukhnacheva T.P. Couette Problem for Kelvin-Voigt Medium. Journal of Mathematical Sciences, 2012, vol. 186, iss. 3, pp. 495–510. DOI: 10.1007/s10958-012-1003-0.

19.Skulsky O.I., Aristov S.N. Mekhanika anomalno vyazkikh zhidkostey [Mechanics of Quasi-Viscous Fluids]. Moscow–Izhevsk, NITs Regularnaya i Khaoticheskaya Dinamika Publ., 2003, 156 p. (In Russian).

20.Aristov S.N., Privalova V.V., Prosviryakov E.Yu. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Russian Journal of Nonlinear Dynamics, 2016, vol. 12, no. 2, pp. 167–178. DOI: 10.20537/nd1602001. (In Russian).

21.Aristov S.N., Prosviryakov E.Yu. On one class of analytic solutions of the stationary axisymmetric convection Bénard–Maragoni viscous incompreeible fluid. Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2013, no. 3 (32), pp. 110–118. DOI: 10.14498/vsgtu1205. (In Russian).

22.Aristov S.N. Prosviryakov E.Yu. Exact Solutions of Thermocapillary Convection in a Localized Heating of a Plane Layer of a Viscous Incompressible Fluid. Vestnik KGTU im. A.N. Tupoleva, 2014, no. 3, pp. 7–12. (In Russian).

23.Aristov S.N., Vlasova S.S., Prosviryakov E.Yu. Linear Benard-Marangoni convection with quadratic heating on top of a plane layer of a viscous incompressible fluid. Polzunovskiy Vestnik, 2014, no. 4–2, pp. 95‒102. (In Russian).

24.Aristov S.N., Shvarts K.G. Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dynamics, 2013, vol. 48, pp. 330–335. DOI: 10.1134/S001546281303006X.

25.Vlasova S.S., Prosviryakov E.Y. Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary. Russian Aeronautics, 2016, vol. 59, no. 4, pp. 529‒535. DOI: 10.3103/S1068799816040140.

26.Vlasova S.S., Prosviryakov E.Yu. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border. Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2016, vol. 20, no. 3, pp. 567–577. DOI: 10.14498/vsgtu1483.

27.Hiemenz K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeit-sstrom eingetauchten geraden Kreiszylinder. Dingler’s Politech. J., 1911, vol. 326, pp. 321–324.

28.Andreev V.K., Cheremnykh E.N. 2D thermocapillary motion of three fluids in a flat channel. Journal of Siberian Federal University. Mathematics and physics, 2016, vol. 9, issue. 4, pp. 404–415. DOI: 10.17516/1997-1397-2016-9-4-404-415.

29.Andreev V.K., Cheremnykh E.N. The joint creeping motion of three viscid liquids in a plane layer: A priori estimates and convergence to steady flow. Journal of Applied and Industrial Mathematics, 2016, vol. 10, no. 1, pp. 7–20. DOI: 10.1134/S1990478916010026.

30.Andreev V.K., Sobachkina N.L. Dvizhenie binarnoy smesi v ploskikh i tsilindricheskikh oblastyakh [The Motion of a Binary Mixture in Planar and Cylindrical Regions]. Krasnoyarsk, SFU Publ., 2012, 187 p. (In Russian).

31.Aristov S.N., Knyazev D.V., Polyanin A.D.  Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, no. 5, pp. 642–662.

DOI: 10.1134/S0040579509050066.

32.Pukhnachev V.V. Group Properties of the Navier-Stokes Equations in a Plane Case. Prikl. Mekh. Tekh. Fiz., 1960, no. 1, pp. 83–90.

33.Ekman V.W. On the Influence of the Earth’s Rotation on Ocean-Currents. Ark. Mat. Astron. Fys., 1905, vol. 2, no. 11, pp. 1–52.

34.Gershuni G.Z., Zhukhovitskii E.M. Convective Stability of Incompressible Fluids. Israel Program for Scientific Translations. Jerusalem: Keter Publishing House, 1976, 330 p.

35.Andreev V.K., Gaponenko Ya.A., Goncharova O.N., Pukhnachev V.V. Mathematical Models of Convection. Berlin, Boston: De Gryuter Publ., 2012, 417 p. DOI: 10.1515/9783110258592.

36.Sidorov A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phys., 1989, vol. 30, no. 2, pp. 197–203. DOI: 10.1007/BF00852164.

37.Lin C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Rational Mech. Anal., 1958, vol. 1, pp. 391–395.

В. В. Привалова, Е. Ю. Просвиряков

ТОЧНЫЕ РЕШЕНИЯ, ОПИСЫВАЮЩИЕ КОНВЕКТИВНОЕ ПОЛЗУЩЕЕ ТЕЧЕНИЕ КУЭТТА-ХИМЕНЦА ПРИ ЛИНЕЙНОМ РАСПРЕДЕЛЕНИИ ТЕМПЕРАТУРЫ НА ВЕРХНЕЙ ГРАНИЦЕ

Найдено новое точное решение плоской конвекции вязкой несжимаемой жидкости, описываемой системой уравнений Обербека–Буссинеска в бесконечном тонком слое.
Решение краевой задачи получено для течения жидкости, возникающее при неоднородном распределении скоростей и линейного источника тепла на верхней границе бесконечного слоя вязкой несжимаемой жидкости. Исследование ползущего конвективного течения осуществляется посредством обобщения изотермического класса точных решений Хименца, в котором поля температуры и давления линейны относительно горизонтальной координаты. Приведен анализ полиномиальных решений, описывающих естественную конвекцию жидкости в приближении Стокса. Показано существование точек, в которых поле скоростей обращается в нуль внутри слоя жидкости, что определяет существование застойных точек и противотечений в жидкости. Аналогичные исследования проведены для полей температуры и давления. Показано, что изотермы и изобары из-за структуры рассматриваемого точного решения всегда будут локально параболическими или гиперболическими (иметь бесконечно удаленную точку).

Ключевые слова: противотечение, точное решение, течение Куэтта, течение Хименца, уравнение Обербека-Буссинеска, приближение Стокса, застойная точка, стратификация

Библиография:

1.Couette M. Etudes sur le frottement des liquides // Ann. Chim. Phys. – 1890. – Vol. 21 – P. 433–510.

2.Ландау Л. Д., Лифшиц E. M. Теоретическая физика : в 10 т. – Т. 6. Гидродинамика, 5-е изд. – М. : Физматлит, 2006. – 736 с.

3.Drazin P. G. The Navier–Stokes equations: A classification of flows and exact solutions. – Cambridge : Cambridge Univ. Press, 2006. – 196 p.

4.Boronin S. A. Stability of the plane Couette flow of a disperse medium with a finite volume fraction of the particles // Fluid Dynamics. – 2011. – Vol. 46.  – P. 64–71. –

DOI: 10.1134/S0015462811010078.

5.Georgiyevskii D. V. Generalized Joseph Estimates of Stability of Plane Shear Flows with Scalar Nonlinearity // Bulletin of the Russian Academy of Sciences: Physics. – 2011.  – Vol. 75, no. 1. – P. 149–152. – DOI: 10.3103/S1062873810121044.

6.Zhuk V. I., Protsenko I. G. Asymptotic model for the evolution of perturbations in the plane Couette-Poiseuille flow // Doklady Mathematics. – 2006. – Vol. 74, no. 3. – P. 896–900. – DOI: 10.1134/S1064562406060287.

7.Rudyak V. Ya., Isakov E. B., Bord E.G. Instability of plane Couette flow of two-phase liquids // Technical Physics Letters. – 1998. – Vol. 24. – P. 199–200. – DOI: 10.1134/1.1262051.

8.Troshkin O. V. Nonlinear stability of Couette, Poiseuille and Kolmogorov plane channel flows // Doklady Mathematics. – 2012. – Vol. 85,  no. 2. – P. 181–185. – DOI: 10.1134/S1064562412020068.

9.Shalybkov D. A. Hydrodynamic and hydromagnetic stability of the Couette flow // Physics-Uspekhi. – 2009. – Vol. 52, no. 9. – P. 915–935. – DOI: 10.3367/UFNe.0179.200909d.0971.

10.Абрамян А. К., Миранцев Л. В., Кучмин А. Ю. Моделирование течения Куэтта простой жидкости в плоском канале наноразмерной высоты // Математическое моделирование. – 2012. – Т. 24, № 4. – С. 3–21.

11.Aristov S. N., Prosviryakov E. Yu. Nonuniform convective Couette flow // Fluid Dynamics. –  2016. – Vol. 51. – P. 581–587. – DOI: 10.1134/S001546281605001X.

12.Aristov S. N., Prosviryakov E. Yu. A new class of exact solutions for three-dimensional thermal diffusion equations // Theor. Found. Chem. Eng. – 2016. – Vol. 50, no. 3. – P. 286–293. – DOI: 10.1134/S0040579516030027.

13.Babkin V. A. Plane Turbulent Couette Flow // Journal of Engineering Physics and Thermophysics. – Vol. 76, iss. 6. – P. 1251–1254. – DOI: 10.1023/B:JOEP.0000012026.19646.c6.

14.Беляева Н. А., Кузнецов К. П. Анализ нелинейной динамической модели течения Куэтта структурированной жидкости в плоском зазоре // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. – 2012. – № 2 (27). – С. 85–92. – DOI: 10.14498/vsgtu1018.

15.Gavrilenko S. L., Shil'ko S. V., Vasin R. A. Characteristics of a viscoplastic material in the couette flow // Journal of Applied Mechanics and Technical Physics. – 2002. – Vol. 43, iss. 3. –  P. 439–444. – DOI: 10.1023/A:1015378622918.

16.Кудинов В.А., Кудинов И.В. Получение точных аналитических решений гиперболических уравнений движения при разгонном течении Куэтта // Известия Российской академии наук. Энергетика. – 2012. – № 1. – С. 119–133.

17.Malyshev V. A., Manita A. D. Stochastic Micromodel of the Couette Flow // Theory of Probability & Its Applications. – 2009. – Vol. 53, iss. 4. – P. 716–727. – DOI: 10.1137/S0040585X97983924.

18.Pukhnachev V. V., Pukhnacheva T. P. Couette Problem for Kelvin-Voigt Medium // Journal of Mathematical Sciences. – 2012. – Vol. 186, iss. 3. – P. 495–510. – DOI: 10.1007/s10958-012-1003-0.

19.Скульский О. И., Аристов С. Н. Механика аномально вязких жидкостей. ‒ Москва‒Ижевск : НИЦ «Регулярная и хаотическая динамика», 2003. ‒ 156 с.

20.Aristov S. N., Privalova V. V., Prosviryakov E. Y. Stationary nonisothermal Couette flow.  Quadratic heating of the upper boundary of the fluid layer // Russian Journal of Nonlinear Dynamics. – 2016. – Vol. 12, no. 2. – P. 167–178. – DOI: 10.20537/nd1602001.

21.Аристов С. Н., Просвиряков Е. Ю. Об одном классе аналитических решений стационарной осесимметричной конвекции Бенара–Марангони вязкой несжимаемой жидкости // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. ‒ 2013. ‒ № 3 (32). ‒ C. 110‒118.

22.Аристов С. Н., Просвиряков Е. Ю. Точные решения термокапиллярной конвекции при локализованном нагреве плоского слоя вязкой несжимаемой жидкости // Вестн. Казан. гос. техн. ун-та им. А. Н. Туполева. ‒ 2014. ‒ № 3. – С. 7–12.

23.Аристов С. Н., Власова С. С., Просвиряков Е. Ю. Линейная конвекция Бенара-Марангони при квадратичном нагреве сверху плоского слоя вязкой несжимаемой жидкости // Ползуновский вестник. ‒ 2014. ‒ №№ 4–2. ‒ С. 95‒102.

24.Aristov S. N., Shvarts K. G. Convective heat transfer in a locally heated plane incompressible fluid layer // Fluid Dynamics. – 2013. – Vol. 48. – P. 330–335. – DOI: 10.1134/S001546281303006X.

25.Vlasova S. S., Prosviryakov E. Y. Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary // Russian Aeronautics. – 2016. – Vol. 59, no. 4. – P. 529‒535. – DOI: 10.3103/S1068799816040140.

26.Vlasova S. S., Prosviryakov E. Yu. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border // Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki. – 2016. – Vol. 20, no. 3. – P. 567–577. – DOI: 10.14498/vsgtu1483.

27.Hiemenz K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeit-sstrom eingetauchten geraden Kreiszylinder // Dingler’s Politech. J. – 1911. – Vol. 326. – P. 321–324.

28.Andreev V. K., Cheremnykh E. N. 2D thermocapillary motion of three fluids in a flat channel. Journal of Siberian Federal University // Mathematics and Physics. – 2016. – Vol. 9, iss. 4. – P. 404–415. – DOI: 10.17516/1997-1397-2016-9-4-404-415.

29.Andreev V. K., Cheremnykh E. N. The joint creeping motion of three viscid liquids in a plane layer: A priori estimates and convergence to steady flow // Journal of Applied and Industrial Mathematics. – 2016. – Vol. 10, no. 1. – P. 7–20. – DOI: 10.1134/S1990478916010026.

30.Андреев В. К., Собачкина Н. Л. Движение бинарной смеси в плоских и цилиндрических областях. – Красноярск : СФУ, 2012. – 187 с. – ISBN 978–5–7638–2372–1.

31.Aristov S. N., Knyazev D. V., Polyanin A. D.  Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables // Theoretical Foundations of Chemical Engineering. – 2009. – Vol. 43, no. 5. – P. 642–662. – DOI: 10.1134/S0040579509050066.

32.Pukhnachev V. V. Group Properties of the Navier-Stokes Equations in a Plane Case // Prikl. Mekh. Tekh. Fiz. – 1960. – No. 1. – P. 83–90.

33.Ekman V. W. On the Influence of the Earth’s Rotation on Ocean-Currents // Ark. Mat. Astron. Fys. – 1905. – Vol. 2, no. 11. – P. 1–52.

34.Гершуни Г. З., Жуховицкий E. М. Конвективная устойчивость несжимаемой жидкости. – Москва : Наука, 1972. – 392 с.

35.Современные математические модели конвекции / В. К. Андреев, Ю. А. Гапоненко, О. Н. Гончарова, В. В. Пухначев – М. : ФИЗМАТЛИТ, 2008. – 368 с.

36.Sidorov A. F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory // J. Appl. Mech. Tech. Phys. – 1989. – Vol. 30, no. 2. – P. 197–203. – DOI: 10.1007/BF00852164.

37.Lin C. C. Note on a class of exact solutions in magneto-hydrodynamics // Arch. Rational Mech. Anal. – 1958. – Vol. 1. – P. 391–395.

         
PDF      

Библиографическая ссылка на статью

Privalova V. V., Prosviryakov E. Yu. Exact Solutions for a Couette–hiemenz Creeping Convective Flow with Linear Temperature Distribution on the Upper Boundary // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 2. - P. 92-109. -
DOI: 10.17804/2410-9908.2018.2.092-109. -
URL: http://dream-journal.org/issues/2018-2/2018-2_170.html
(accessed: 21.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru