N. P. Starostin, M. A. Vasilieva
SUBSTANTIATION OF TECHNOLOGICAL OPERATIONS OF WELDING A SADDLE BRANCH TO POLYETHYLENE PIPES AT TEMPERATURES BELOW AVAILABLE
DOI: 10.17804/2410-9908.2018.1.041-049 Additional branches for gas supply systems are generally installed during the completion
of the construction of a gas pipeline, often falling in the autumn or winter time, when the air temperature is below the maximum allowable for welding polyethylene pipes. At ambient temperatures below minus 15 °С, it is recommended to weld polyethylene pipes under a shelter, where the temperature is maintained in the permissible temperature range.
The paper proposes a mathematical model for the thermal process of welding a saddle branch to a polyethylene pipe taking into account the heat of phase transition. The corresponding three-dimensional non-linear heat equation is solved by the finite element method. As an example, calculations were made for a PE 100 SDR 11 polyethylene pipe and a 100/63 saddle tap. Comparison of the calculated and experimental temperature data establishes the adequacy of the proposed mathematical model to the actual thermal process of welding a saddle branch to a polyethylene pipe. To obtain a high-quality welded joint, it is necessary to ensure that the temperature field changes according to a certain regularity in the heat-affected zone. Admissible regularity is ensured when welding is performed in the range of climatic air temperatures of above minus 15 °C. In this study, examples are considered for the definition of simple technological operations that ensure such regularity at ambient temperatures below normative ones. For comparison, the dynamics of temperature fields at ambient temperatures of 20 °C and minus 40 °C was calculated. Technological operations necessary to weld a saddle branch at the temperatures below the standard are determined from studying the dynamics of temperature profile during the welding of the saddle branch to a polyethylene pipe at various ambient temperatures.
Keywords: mathematical model, finite element method, temperature, calculation, thermal process, welding, phase change, crystallization Bibliography:
1.SP 42-103-2003. Proektirovanie i stroitelstvo gazoprovodov iz polietilenovykh trub i rekonstruktsiya iznoshennykh gazoprovodov [Design and Construction of Polyethylene Gas Pipelines and Reconstruction of Decrepit Gas Pipelines: Handbook of Instructions]. (In Russian).
2. Starostin N.P., Ammosova O.A. Simulation of the Thermal Process of Butt Welding of Polyethylene Pipes at Low Temperatures. J. Eng. Phys. Thermophys., 2016, vol. 89, no. 3, pp. 714–720. DOI: 10.1007/s10891-016-1430-8.
3.Strang G. and Fix G.J. An Analysis of the Finite Element Method, Prentice–Hall, Englewood Cliffs, NJ, 1973.
4.Segerlind L.J. Applied Finite Element Analysis, 2nd edition, Wiley, New York, 1984, 427 p.
5.Chebbo Z, Vincent M., Boujlal A., Gueugnaut D., Tillier Y. Numerical and Experimental Study of the Electrofusion Welding Process of Polyethylene Pipes. Polymer Engineering & Science, 2015, vol. 55, iss. 1, pp. 123–131. DOI: 10.1002/pen.23878.
6.Logg F., Mardal K.-A., Wells G.N., editors. Automated Solution of Partial Differential Equations by Finite Element Method: The FEniCS Book (Lecture Notes in Computational Science and Engineering), Springer, 2012, 731 p.
7.Software package FEniCS. Available at: http://fenicsproject.org/
8.Software package GMSH. Available at: http://geuz.org/gmsh/
9.Samarsky A.A., Vabishchevich P.N. Vychislitelnaya teploperedacha [Computational Heat Transfer]. Moscow, Librokom Publ., 2014, 784 p. (In Russian). 10.Ciarlet Ph.G. The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam and New York, 1978, xvii-530 p.
Н. П. Старостин, М. А. Васильева
ОБОСНОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ ПРИВАРКИ СЕДЛОВЫХ ОТВОДОВ К ПОЛИЭТИЛЕНОВЫМ ТРУБАМ ПРИ ТЕМПЕРАТУРАХ НИЖЕ ДОПУСТИМЫХ
Работы по монтажу дополнительных ответвлений для систем газоснабжения обычно проводят в период завершения строительства газопровода, часто попадающего на осенне-зимнее время, когда температура воздуха ниже предельно допустимой для проведения сварки полиэтиленовых труб. При температурах окружающего воздуха ниже –15 °С сварку полиэтиленовых труб рекомендуется проводить под укрытием, в котором поддерживается температура из допустимого температурного интервала.
В статье предложена математическая модель теплового процесса приварки седлового отвода к полиэтиленовой трубе с учетом теплоты фазового перехода. Соответствующее трехмерное нелинейное уравнение теплопроводности решают методом конечных элементов. В качестве примера расчеты были сделаны для полиэтиленовой трубы ПЭ 100 SDR 11
и седлового отвода 100/63. Сопоставлением расчетных и экспериментальных температурных данных установлена адекватность предложенной математической модели реальному тепловому процессу приварки седлового отвода к полиэтиленовой трубе. Для получения качественного сварного соединения необходимо обеспечить в зоне термического влияния изменение температурного поля по определенной закономерности. Допустимая закономерность обеспечивается при сварке в диапазоне климатических температур воздуха выше –15 °С. В статье рассматриваются примеры для определения простых технологических операций, обеспечивающих такую закономерность при температурах окружающего воздуха ниже нормативных. Для сравнения были рассмотрены расчеты динамики температурных полей при температурах окружающего воздуха 20 °С и –40 °С. На основе исследования динамики температурного поля при приварке седлового отвода к полиэтиленовой трубе при различных температурах окружающего воздуха определены технологические операции, необходимые для проведения приварки седлового отвода при температурах воздуха ниже нормативного.
Ключевые слова: математическая модель, метод конечных элементов, температура, расчет, тепловой процесс, приварка, фазовый переход, кристаллизация Библиография:
1.СП 42-103-2003. Проектирование и строительство газопроводов из полиэтиленовых труб и реконструкция изношенных газопроводов.
2.Starostin N. P., Ammosova O. A. Simulation of the Thermal Process of Butt Welding of Polyethylene Pipes at Low Temperatures // J. Eng. Phys. Thermophys. – 2016. – Vol. 89, no. 3. – Р. 714–720. – DOI: 10.1007/s10891-016-1430-8.
3.Стренг Г., Фикс Дж. Теория метода конечных элементов / пер. с англ. В. И. Агошкова, В. А. Василенко, В. В. Шайдурова / под ред. Г. И. Марчука. – М. : Мир, 1977. – 349 c.
4.Сегерлинд Л. Применение метода конечных элементов / пер. с англ. – М. : Мир, 1979. – 392 с.
5.Numerical and Experimental Study of the Electrofusion Welding Process of Polyethylene Pipes / Z. Chebbo, M. Vincent, A. Boujlal, D. Gueugnaut, Y. Tillier // Polymer Engineering and Science. – 2015. – Vol. 55, iss. 1. – Р. 123–131. – DOI: 10.1002/pen.23878.
6.Automated Solution of Partial Differential Equations by Finite Element Method: The FEniCS Book / ed. by F. Logg, K.-A. Mardal, G. N. Wells. – Springer, 2012. – 731 p.
7.Software package FEniCS. – URL: http://fenicsproject.org/
8.Software package GMSH. – URL: http://geuz.org/gmsh/
9.Самарский А. А., Вабищевич П. Н. Вычислительная теплопередача. – М. : ЛИБРОКОМ, 2014. – 784 с. 10.Сьярле Ф. Метод конечных элементов для эллиптических задач. – М. : Мир, 1980. – 512 с.
Библиографическая ссылка на статью
Starostin N. P., Vasilieva M. A. Substantiation of Technological Operations of Welding a Saddle Branch to Polyethylene Pipes at Temperatures below Available // Diagnostics, Resource and Mechanics of materials and structures. -
2018. - Iss. 1. - P. 41-49. - DOI: 10.17804/2410-9908.2018.1.041-049. -
URL: http://dream-journal.org/issues/2018-1/2018-1_169.html (accessed: 31.10.2024).
|