The paper analyzes the possibility of applying five different strength criteria (maximum stress criterion, Mises-Hill, Pisarenko-Lebedev, Fisher, Goldenblat-Kopnov) to calculating the strength of orthotropic shell structures. We consider shallow shells of double curvature, square in plan, panels of cylindrical and conical shells. A geometrically nonlinear mathematical model of their deformation, taking into account transverse shearing, is used. For calculations, the characteristics of modern orthotropic materials are used, such as fiberglass and CFRP. An increase in the areas of the failure of strength conditions with increasing load is shown.
1.Goldenblat I.I., Kopnov V.A. Strength criterion for anisotropic materials. Izv. AN SSSR. Mekhanika, 1965, no. 6, pp. 77–83. (In Russian).
2.Bazhanov V.L., Goldenblat I.I., Kopnov V.A., Pospelov A.D., Sinyukov A.M. Plastinki i Obolochki iz Stekloplastikov [Fiberglass Plates and Shells]. M, Vysshaya Shkola Publ., 1970, 408 p. (In Russian).
3.Kopnov V.A., Belov G.P. Evaluating the strength of composite materials and other media with different types of anisotropy. Izvestiya RAN. MTT, 2014, no. 2 (32), pp. 73–80. (In Russian).
4.Giginjak F.F., Kovalchuk B.I., Lamashevsky V.P., Lebedev A.A. Handbook of Mechanical Properties of Structural Materials at a Complex Stress State. Begell House Inc. Publ., 2001, 504 p.
5.Pisarenko G.S., Lebedev A.A. Deformation and strength of materials at a complex stress state. Prikladnaya Mekhanika, 1968, no. 4, iss. 3, pp. 45–50. (In Russian).
6.Fisher L. How to predict structural behavior of R.P. Laminates. Modern Plastics, 1960, no. 6.
7.Zakharov K.V. Strength criterion for layered masses. Plasticheskie Massy, 1961, no. 8. (In Russian).
8.Malmeyster A.K. Geometry of strength theories. Mekhanika Polimerov, 1966, no. 4. (In Russian).
9. Alikin V.N., Litvin I.E., Sesyunin S.G., Sokolovsky M.I., Ushin N.V. Kriterii Prochnosti i Nadezhnost Konstruktsiy, pod red. chl.-korr. RAN M.I. Sokolovskogo [Criteria for the Strength and Reliability of Structures, M.I. Sokolovskiy, cor. memb. RAS, ed.]. Moscow, Nedra-Biznestsentr Publ., 2005, 164 p. (In Russian).
10.Aliev M.M., Shafieva S.V., Karimova N.G. Criteria for the strength and fracture of various materials with due regard for the effect of comprehensive pressure. Vestnik CHGPU im. I.Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2012, no. 3 (13), pp. 64–71. (In Russian).
11.Aliev M.M., Bayburova M.M. Anisotropic materials short-time strength criteria and their application to limit state problems. Vestnik SamGU – Estestvennonauchnaya seriya, 2007, no. 6 (56), pp. 22–29. (In Russian).
12.Bendyukov V.V., Osyayev O.G. Strength criteria for anisotropic composite materials. Nauchnyy vestnik MGTU GA, 2011, no. 163, pp. 151–156. (In Russian).
13.Makovenko S.Ya. The Comparative Analysis of two Criteria of Anisotropic Material Strength. Stroitelnaya Mekhanika Inzhenernykh Konstruktsiy i Sooruzheniy, 2005, no. 1, pp. 65–70. (In Russian).
14.Nekliudova E.A., Semenov A.S., Melnikov B.E., Semenov S.G. Experimental research and finite element analysis of elastic and strength properties of fiberglass composite material. Magazine of Civil Engineering, 2014, no. 3, pp. 25–39. DOI: 10.5862/MCE.47.3.
15.Polilov A.N., Tatus N.A. Experimental substantiation of strength criteria for FRP showing directional type of fracture. Vestnik PNIPU, Mekhanika, 2012, no. 2, pp. 140–166. (In Russian).
16.Grebenyuk S.N., Melashchenko O.P. The use of various criteria for calculating the strength of fibrous composites. Zbіrnyk Naukovykh Prats Kharkіvskogo Unіversitetu Povіtryanykh Sil, 2012, no. 3 (32), pp. 134–136. (In Russian).
17.Galicki J., Czech M. A new approach to formulate the general strength theories for anisotropic discontinuous materials. Part A: The experimental base for a new approach to formulate the general strength theories for anisotropic materials on the basis of wood. Applied Mathematical Modelling, 2013, vol. 37, no. 3, pp. 815–827. DOI: 10.1016/j.apm.2012.03.004.
18. Niu J., Liu G., Tian J., Zhang Y., Meng L. Comparison of yield strength theories with experimental results. Engineering Mechanics, 2014, vol. 31, no. 1, pp. 181–187. DOI: 10.6052/j.issn.1000-4750.2012.09.0622.
19.Liu G. A novel limiting strain energy strength theory. Transactions of Nonferrous Metals Society of China, 2009, vol. 19, no. 6, pp. 1651–1662. DOI: 10.1016/S1003-6326(09)60084-4.
20.Zhang S., Song B., Wang X., Zhao D., Chen X. Deduction of geometrical approximation yield criterion and its application. Journal of Mechanical Science and Technology, 2014, vol. 28, no. 6, pp. 2263–2271. DOI: 10.1007/s12206-014-0515-6.
21.Zhu X.-K., Leis B.N. Average shear stress yield criterion and its application to plastic collapse analysis of pipelines. International Journal of Pressure Vessels and Piping, 2006, vol. 83, no. 9, pp. 663–671. DOI: 10.1016/j.ijpvp.2006.06.001.
22.Kalnins A., Updike D.P. Limit Pressures of Cylindrical and Spherical Shells. Journal of Pressure Vessel Technology, 2001, vol. 123, no. 3, pp. 288–292. DOI: 10.1115/1.1367273.
23.Zezin Y.P. Experimental investigation of the strength properties of particulate polymeric composites, 2016, vol. 1785, pp. 030036. DOI: 10.1063/1.4967057.
24.Yan L., Junhai Z., Ergang X., Xueye C. Research on burst pressure for thin-walled elbow and spherical shell made of strength differential materials. Materials Research Innovations, 2015, vol. 19, no. 5, pp. 80–87. DOI: 10.1179/1432891715Z.0000000001340.
25.Shroff S., Kassapoglou C. Progressive failure modelling of impacted composite panels under compression. Journal of Reinforced Plastics and Composites, 2015, vol. 34, no. 19, pp. 1603–1614. DOI: 10.1177/0731684415592485.
26.Sengupta J., Ghosh A., Chakravorty D. Progressive Failure Analysis of Laminated Composite Cylindrical Shell Roofs. Journal of Failure Analysis and Prevention, 2015, vol. 15, no. 3, pp. 390–400. DOI: 10.1007/s11668-015-9951-6.
27.Shokrieh M.M., Karamnejad A. Investigation of Strain Rate Effects on the Dynamic Response of a Glass/Epoxy Composite Plate under Blast Loading by Using the Finite-Difference Method. Mechanics of Composite Materials, 2014, vol. 50, no. 3, pp. 295–310. DOI: 10.1007/s11029-014-9415-1.
28.Günel M., Kayran A. Non-linear progressive failure analysis of open-hole composite laminates under combined loading. Journal of Sandwich Structures & Materials, 2013, vol. 15, no. 3, pp. 309–339. DOI: 10.1177/1099636213483651.
29.Van der Meer F.P., Sluys L.J., Hallett S.R., Wisnom M.R. Computational modeling of complex failure mechanisms in laminates. Journal of Composite Materials, 2012, vol. 46, no. 5, pp. 603–623. DOI: 10.1177/0021998311410473.
30.Pietropaoli E. Progressive Failure Analysis of Composite Structures Using a Constitutive Material Model (USERMAT) Developed and Implemented in ANSYS ©. Applied Composite Materials, 2012, vol. 19, no. 3–4, pp. 657–668. DOI: 10.1007/s10443-011-9220-0.
31.Garnich M.R., Akula V.M. Review of Degradation Models for Progressive Failure Analysis of Fiber Reinforced Polymer Composites. Applied Mechanics Reviews, 2009, vol. 62, no. 1, pp. 010801. DOI: 10.1115/1.3013822.
32.Bleyer J., de Buhan P. A numerical approach to the yield strength of shell structures. European Journal of Mechanics – A/Solids, 2016, vol. 59, pp. 178–194. DOI: 10.1016/j.euromechsol.2016.03.002.
33.Sun H.-H., Tan P.-L. Background of ABS Buckling Strength Assessment Criteria for Cylindrical Shells in Offshore Structures. Journal of Offshore Mechanics and Arctic Engineering, 2008, vol. 130, no. 2, pp. 021012. DOI: 10.1115/1.2913349.
34.Mellor P.B. The ultimate strength of thin-walled shells and circular diaphragms subjected to hydrostatic pressure. International Journal of Mechanical Sciences, 1960, vol. 1, nos. 2–3, pp. 216–228. DOI: 10.1016/0020-7403(60)90041-2.
35.Noh H.C. Ultimate strength of large scale reinforced concrete thin shell structures. Thin-Walled Structures, 2005, vol. 43, no. 9, pp. 1418–1443. DOI: 10.1016/j.tws.2005.04.004
36.Zhang B., Sun Q. The Ultimate Strength of Stiffened Panel with Overall Buckling. Advanced Materials Research, 2011, vol. 308–310, pp. 1297–1301. DOI: 10.4028/www.scientific.net/AMR.308-310.1297.
37.Ueda Y., Rashed S.M.H., Paik J.K. Buckling and ultimate strength interaction in plates and stiffened panels under combined inplane biaxial and shearing forces. Marine Structures, 1995, vol. 8, no. 1, pp. 1–36. DOI: 10.1016/0951-8339(95)90663-F.
38.Abrosimov N.A., Elesin A.V. Numerical analysis of dynamic strength of composite cylindrical shells under multiple-pulse exposures. PNRPU Mechanics Bulletin, 2016, no. 4, pp. 7–19. DOI: 10.15593/perm.mech/2016.4.01.
39.Karpov V.V., Semenov A.A. Strength criteria for thin orthotropic shells. Part 2: Calculation and analysis. Vestnik Grazhdanskikh Inzhenerov, 2015, no. 1 (48), pp. 60–70. (In Russian).
40.Tsvetkov S.V., Kulish G.G. Strength Criteria of Unidirectional Organic Plastic in Three-Axis Stress State. Vestnik MGTU im. N.E. Baumana. Seriya: Mashinostroe, 2011, no. SP, pp. 19–28. (In Russian).
41.Yu M.-H. Advances in strength theories for materials under complex stress state the 20th sentury. Appl. Mech. Rev., 2002, vol. 55, no. 3, pp. 169–218. DOI: 10.1115/1.1472455.
42.Yu M.-H., Li J.-C. Computational plasticity: with emphasis on the application of the unified strength theory. Hangzhou, Zhejiang Univ. Press, 2012, 529 p.
43.Kolupaev V.A., Yu M.-H., Altenbach H. Visualization of the Unified Strength Theory. Archive of Applied Mechanics, 2013, vol. 83, no. 7, pp. 1061–1085. DOI: 10.1007/s00419-013-0735-8.
44.Tsvetkov S.V. Strength criteria for transversely isotropic materials of different symmetry classes of structure. Vestnik MGTU im. N.E. Baumana. Seriya: Mashinostroenie, 2009, no. 1, pp. 86–99. (In Russian).
45.Karpov V.V., Semenov A.A. Strength criteria for thin orthotropic shells. Part 1: Analysis of the basic strength criteria for isotropic and orthotropic materials. Vestnik Grazhdanskikh Inzhenerov, 2014, no. 6 (47), pp. 43–51. (In Russian).
46.Smerdov A.A., Buyanov I.A., Chudnov I.V. Analysis of optimal combinations of requirements to developed CFRP for large space-rocket designs. Izvestiya Vuzov. Mashinostroenie, 2012, no. 8, pp. 70–77. (In Russian).
47.Tyshkevich V.N. The choice of strength criteria for pipes made of reinforced plastics. Izvestiya Volgogradskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2011, no. 5 (78), pp. 76–79. (In Russian).
48.Karpov V.V., Semenov A.A. Mathematical models and algorithms for studying strength and stability of shell structures. Journal of Applied and Industrial Mathematics, 2017, vol. 11, no. 1, pp. 70–81. DOI: 10.1134/S1990478917010082.
49.Kuznetsov E.B. Continuation of solutions in multiparameter approximation of curves and surfaces. Computational Mathematics and Mathematical Physics, 2012, vol. 52, no. 8, pp. 1149–1162. DOI: 10.1134/S0965542512080076.
В работе проанализирована возможность применения пяти различных критериев прочности (критерий максимальных напряжений, Мизеса – Хилла, Писаренко – Лебедева, Фишера, Гольденблата – Копнова) к расчетам прочности ортотропных оболочечных конструкций.
Рассматрены пологие оболочки двоякой кривизны, квадратные в плане, панели цилиндрических и конических оболочек. Использована геометрически нелинейная математическая модель их деформирования, учитывающая поперечные сдвиги. Для расчетов использованы характеристики современных ортотропных материалов – стеклопластика и углепластика. Показано развитие областей невыполнения условий прочности при увеличении нагрузки.
1.Гольденблат И. И., Копнов В. А. Критерий прочности анизотропных материалов // Изв. АН СССР. Механика. – 1965. – № 6. – С. 77–83.
2.Пластинки и оболочки из стеклопластиков / В. Л. Бажанов, И. И. Гольденблат, В. А. Копнов, А. Д. Поспелов, А. М. Синюков. – М. : Изд-во Высшая школа, 1970. – 408 с.
3.Копнов В. А., Белов Г. П. Оценка прочности композиционных материалов и других сред с различными видами анизотропии // Известия РАН. МТТ. – 2014. – № 2 (32). – С. 73–80.
4.Механические свойства конструкционных материалов при сложном напряженном состоянии : cправочник / А. А. Лебедев, Б. И. Ковальчук, Ф. Ф. Гигиняк, В. П. Ламашевский. – Киев : Наукова думка, 1983. – 366 с.
5.Писаренко Г. С., Лебедев А. А. Деформирование и прочность материалов при сложном напряженном состоянии // Прикладная механика. – 1968. – № 4, вып. 3. – С. 45–50.
6.Fisher L. How to predict structural behavior of R.P. Laminates // Modern Plastics. – 1960. – № 6.
7.Захаров К. В. Критерий прочности для слоистых масс // Пластические массы. – 1961. – № 8.
8.Малмейстер А. К. Геометрия теорий прочности // Механика полимеров. – 1966. – № 4.
9.Критерии прочности и надежность конструкций / В. Н. Аликин, И. Е. Литвин, С. Г. Сесюнин, М. И. Соколовский, Н. В. Ушин / под ред. чл.-корр. РАН М. И. Соколовского. – М. : ООО «Недра-Бизнесцентр», 2005. – 164 с.
10.Алиев М. М., Шафиева С. В., Каримова Н. Г. Критерии прочности и разрушения разнопрочных материалов с учетом влияния всестороннего давления // Вестник ЧГПУ им. И. Я. Яковлева. Серия: Механика предельного состояния. – 2012. – № 3 (13). – С. 64–71.
11.Алиев М. М., Байбурова М. М. Критерии кратковременной прочности анизотропных материалов и применение их для решения задач предельного равновесия // Вестник СамГУ. Естественнонаучная серия. – 2007. – № 6 (56). – С. 22–29.
12.Бендюков В. В., Осяев О. Г. Критерии прочности анизотропных композитных материалов // Научный вестник МГТУ ГА. – 2011. – № 163. – С. 151–156.
13.Маковенко С. Я. О взаимности компонент тензоров прочности некоторых теорий прочности анизотропных материалов // Строительная механика инженерных конструкций и сооружений. – 2005. – № 1. – С. 65–70.
14.Experimental research and finite element analysis of elastic and strength properties of fiberglass composite material / E. A. Nekliudova, A. S. Semenov, B. E. Melnikov, S. G. Semenov // Magazine of Civil Engineering. – 2014. – No. 3. – P. 25–39. – DOI: 10.5862/MCE.47.3.
15.Полилов А. Н., Татусь Н. А. Экспериментальное обоснование критериев прочности волокнистых композитов, проявляющих направленный характер разрушения // Вестник ПНИПУ. Механика. – 2012. – № 2. – С. 140–166.
16.Гребенюк С. Н., Мелащенко О. П. Использование различных критериев для расчёта прочности волокнистых композитов // Збірник наукових праць Харківського університету Повітряних Сил. – 2012. – № 3 (32). – С. 134–136.
17.Galicki J., Czech M. A new approach to formulate the general strength theories for anisotropic discontinuous materials. Part A: The experimental base for a new approach to formulate the general strength theories for anisotropic materials on the basis of wood // Applied Mathematical Modelling. – 2013. – Vol. 37, no. 3. – P. 815–827. – DOI: 10.1016/j.apm.2012.03.004.
18.Comparison of yield strength theories with experimental results / J. Niu, G. Liu, J. Tian, Y. Zhang and L. Meng // Engineering Mechanics. – 2014. – Vol. 31, no. 1. – P. 181–187. – DOI: 10.6052/j.issn.1000-4750.2012.09.0622.
19.Liu G. A novel limiting strain energy strength theory // Transactions of Nonferrous Metals Society of China. – 2009. – Vol. 19, no. 6. – P. 1651–1662. – DOI: 10.1016/S1003-6326(09)60084-4.
20.Deduction of geometrical approximation yield criterion and its application / S. Zhang, B. Song, X. Wang, D. Zhao and X. Chen // Journal of Mechanical Science and Technology. – 2014. – Vol. 28, no. 6. – P. 2263–2271. – DOI: 10.1007/s12206-014-0515-6.
21.Zhu X.-K., Leis B.N. Average shear stress yield criterion and its application to plastic collapse analysis of pipelines // International Journal of Pressure Vessels and Piping. – 2006. – Vol. 83, no. 9. – P. 663–671. – DOI: 10.1016/j.ijpvp.2006.06.001.
22.Kalnins A., Updike D.P. Limit Pressures of Cylindrical and Spherical Shells // Journal of Pressure Vessel Technology. – 2001. – Vol. 123, no. 3. – P. 288–292. – DOI: 10.1115/1.1367273.
23.Zezin Y. P. Experimental investigation of the strength properties of particulate polymeric composites. – 2016. – Vol. 1785. – P. 030036. – DOI: 10.1063/1.4967057.
24.Research on burst pressure for thin-walled elbow and spherical shell made of strength differential materials / L. Yan, Z. Junhai, X. Ergang, C. Xueye // Materials Research Innovations. – 2015. – Vol. 19, no. 5. – P. 80–87. – DOI: 10.1179/1432891715Z.0000000001340.
25.Shroff S., Kassapoglou C. Progressive failure modelling of impacted composite panels under compression // Journal of Reinforced Plastics and Composites. – 2015. – Vol. 34, no. 19. – P. 1603–1614. – DOI: 10.1177/0731684415592485.
26.Sengupta J., Ghosh A., Chakravorty D. Progressive Failure Analysis of Laminated Composite Cylindrical Shell Roofs // Journal of Failure Analysis and Prevention. – 2015. – Vol. 15, no. 3. – P. 390–400. – DOI: 10.1007/s11668-015-9951-6.
27.Shokrieh M. M., Karamnejad A. Investigation of Strain Rate Effects on the Dynamic Response of a Glass/Epoxy Composite Plate Under Blast Loading by Using the Finite-Difference Method // Mechanics of Composite Materials. – 2014. – Vol. 50, no. 3. – P. 295–310. – DOI: 10.1007/s11029-014-9415-1.
28.Günel M., Kayran A. Non-linear progressive failure analysis of open-hole composite laminates under combined loading // Journal of Sandwich Structures & Materials. – 2013. – Vol. 15, no. 3. – P. 309–339. – DOI: 10.1177/1099636213483651.
29.Computational modeling of complex failure mechanisms in laminates / F. P. Van der Meer, L. J. Sluys, S. R. Hallett, M. R. Wisnom // Journal of Composite Materials. – 2012. – Vol. 46, no. 5. – P. 603–623. – DOI: 10.1177/0021998311410473.
30.Pietropaoli E. Progressive Failure Analysis of Composite Structures Using a Constitutive Material Model (USERMAT) Developed and Implemented in ANSYS © // Applied Composite Materials. – 2012. – Vol. 19, nos. 3–4. – P. 657–668. – DOI: 10.1007/s10443-011-9220-0.
31.Garnich M. R., Akula V. M. Review of Degradation Models for Progressive Failure Analysis of Fiber Reinforced Polymer Composites // Applied Mechanics Reviews. – 2009. – Vol. 62, no. 1. – P. 010801. – DOI: 10.1115/1.3013822.
32.Bleyer J., De Buhan P. A numerical approach to the yield strength of shell structures // European Journal of Mechanics – A/Solids. – 2016. – Vol. 59. – P. 178–194. – DOI: 10.1016/j.euromechsol.2016.03.002.
33.Sun H.-H., Tan P.-L. Background of ABS Buckling Strength Assessment Criteria for Cylindrical Shells in Offshore Structures // Journal of Offshore Mechanics and Arctic Engineering. – 2008. – Vol. 130, no. 2. – P. 021012. – DOI: 10.1115/1.2913349.
34.Mellor P. B. The ultimate strength of thin-walled shells and circular diaphragms subjected to hydrostatic pressure // International Journal of Mechanical Sciences. – 1960. – Vol. 1, nos. 2–3. – P. 216–228. – DOI: 10.1016/0020-7403(60)90041-2.
35.Noh H. C. Ultimate strength of large scale reinforced concrete thin shell structures // Thin-Walled Structures. – 2005. – Vol. 43, no. 9. – P. 1418–1443. – DOI: 10.1016/j.tws.2005.04.004.
36.Zhang B., Sun Q. The Ultimate Strength of Stiffened Panel with Overall Buckling // Advanced Materials Research. – 2011. – Vol. 308–310. – P. 1297–1301. – DOI: 10.4028/www.scientific.net/AMR.308-310.1297.
37.Ueda Y., Rashed S. M. H., Paik J. K. Buckling and ultimate strength interaction in plates and stiffened panels under combined inplane biaxial and shearing forces // Marine Structures. – 1995. – Vol. 8, no. 1. – P. 1–36. – DOI: 10.1016/0951-8339(95)90663-F.
38.Abrosimov N. A., Elesin A. V. Numerical analysis of dynamic strength of composite cylindrical shells under multiple-pulse exposures // PNRPU Mechanics Bulletin. – 2016. – No. 4. – P. 7–19. – DOI: 10.15593/perm.mech/2016.4.01.
39.Карпов В. В., Семенов А. А. Критерии прочности для тонкостенных ортотропных оболочек. Ч. 2. Расчеты и анализ // Вестник гражданских инженеров. – 2015. – № 1 (48). – С. 60–70.
40.Цветков С. В., Кулиш Г. Г. Критерии прочности однонаправленного органопластика при трехосном напряженном состоянии // Вестник МГТУ им. Н.Э. Баумана. Серия: Машиностроение. – 2011. – № SP. – С. 19–28.
41.Yu M.-H. Advances in strength theories for materials under complex stress state the 20th сentury // Appl. Mech. Rev. – 2002. – Vol. 55, no. 3. – P. 169–218. – DOI: 10.1115/1.1472455.
42.Yu M.-H., Li J.-C. Computational plasticity: with emphasis on the application of the unified strength theory. – Hangzhou : Zhejiang Univ. Press, 2012. – 529 p.
43.Kolupaev V. A., Yu M.-H., Altenbach H. Visualization of the Unified Strength Theory // Archive of Applied Mechanics. – 2013. – Vol. 83, no. 7. – P. 1061–1085. – DOI: 10.1007/s00419-013-0735-8.
44.Цветков С. В. Критерии прочности трансверсально-изотропных материалов различных классов симметрии структуры // Известия ВУЗов. Машиностроение. – 2009. – № 1. – С. 86–99.
45.Карпов В. В., Семенов А. А. Критерии прочности для тонкостенных ортотропных оболочек. Ч. 1. Анализ основных критериев прочности изотропных и ортотропных материалов // Вестник гражданских инженеров. – 2014. – № 6 (47). – С. 43–51.
46.Смердов А. А., Буянов И. А., Чуднов И. В. Анализ оптимальных сочетаний требований к разрабатываемым углепластикам для крупногабаритных ракетно-космических конструкций // Известия высших учебных заведений. Машиностроение. – 2012. – № 8. – С. 70–77.
47.Тышкевич В. Н. Выбор критерия прочности для труб из армированных пластиков // Известия Волгоградского государственного технического университета. – 2011. – № 5 (78). – С. 76–79.
48.Karpov V. V., Semenov A. A. Mathematical models and algorithms for studying strength and stability of shell structures // Journal of Applied and Industrial Mathematics. – 2017. – Vol. 11, no. 1. – P. 70–81. – DOI: 10.1134/S1990478917010082.
49.Kuznetsov E. B. Continuation of solutions in multiparameter approximation of curves and surfaces // Computational Mathematics and Mathematical Physics. – 2012. – Vol. 52, no. 8. – P. 1149–1162. – DOI: 10.1134/S0965542512080076.