Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 1

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

M. V. Rogozhin, V. E. Rogalin, M. I. Krymskii, I. A. Kaplunov

ON THE POSSIBILITY OF INCREASING THE SERVICE LIFE OF HIGH-POWER LASER OPTICS THROUGH THE USE OF POLYCRYSTALLINE DIAMOND WINDOWS WITH A CENTRAL MONOCRYSTALLINE AREA

DOI: 10.17804/2410-9908.2018.1.034-040

For high-power CO2 lasers operating at 10-µm wavelength there is a serious deficiency of transparent materials. Only expensive semiconductor and dielectric materials with poor mechanical and thermal characteristics are transparent in this spectral region. The construction of an output high-power laser window made of polycrystalline diamond with a single-crystalline central region is considered. Numerical modeling of an optical damage threshold is performed. The results are compared with those for a conventionally designed polycrystalline diamond window. An increase in maximum allowed output radiation power due to the use of a composite window is demonstrated.

Keywords: high power CO2-laser, output window, polycrystalline diamond, single-crystal diamond, optical damage

References:

1. Rogalin V.E. Transparent materials for high-power pulsed CO2-lasers // Izvestiya VUZov. Materialy elektronnoy tekhniki, 2013, no. 2, pp. 11–18. (In Russian).

2.Rogalin V.E., Aranchiy S.A. Polycrystalline diamonds – new prospects for power optics and electronics. Integral, 2012, no. 5 (67), pp. 7–9. (In Russian).

3.Rogalin V.E., Ashkenazi E.E., Popovich A.F., Ral’chenko V.G., Konov V.I., Aranchii S.M., Ruzin M.V., Uspenskii S.A. Resistance of diamond optics to high-power fiber laser radiation. Russian Microelectronics, 2012, vol. 41, no. 8, pp. 464–468. DOI: 10.1134/S106373971208015X.

4.Kaminskii A.A., Hemley R.J., Lai J., Yan C.S., Mao H.K., Ralchenko V.G.,. Eichler H.J, Rhee H. High-order stimulated Raman scattering in CVD single crystal diamond. Laser Phys. Lett., 2007, vol. 4, iss. 5, pp. 350–353. DOI: 10.1002/lapl.200610127.

5.Friel. I., Geoghegan S.L., Twitchen D.J., Scarsbrook G.A. Development of high quality single crystal diamond for novel laser applications. In: Proc. SPIE 7838: Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defense Systems Technology VII, 2010, 783819.

6.Webster S., Chen Y., Turri G., Bennett A., Wickham B., Bass M. Intrinsic and extrinsic absorption of chemical vapor deposition single-crystal diamond from the middle  ultraviolet to the far infrared. J. Opt. Soc. Am. B., 2015, vol. 32, no. 3, pp. 479–484. DOI: 10.1364/JOSAB.32.000479.

7.Anoikin E., Muhr A., Bennett An., Twitchen D. J., H. de Wit Diamond optical components for high – power and high-energy laser applications. In: Proc. of SPIE, vol. 9346, 93460T, pp. 1–9. DOI: 10.1117/12.2079714.

8.Bogachev A.V., Garanin S.G., Dudov A.M., Eroshenko V.A., Kulikov S.M., Mikaelyan G.T., Panarin V.A., Pautov V.O., Rus A.V., Sukharev S.A. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation. Quantum Electronics, 2012, vol. 42, no. 2, pp. 95–98. DOI: 10.1070/QE2012v042n02ABEH014734.

9.Ho S., Yan C.S., Liu Z., Mao H.K., Hemley R.J. Prospects for large single crystal CVD diamond. Industrial Diamond Review, 2006, vol. 66, pp. 28–32.

10.Yamada H., Chayahara A., Mokuno Y., Umezawa H., Shikata S., Fujimori N. Fabrication of 1 Inch Mosaic Crystal Diamond Wafers. Applied Physics Express, 2010, vol. 3, no. 5, pp. 051301. DOI: 10.1143/APEX.3.051301.

11.Vikharev A.L., Gorbachev A.M., Dukhnovsky M.P., Muchnikov A.B., Ratnikova A.K., Fedorov Yu.Yu. Combined Single-crystalline and Polycrystalline CVD Diamond Substrates for Diamond Electronics. Semiconductors, 2012, vol. 46, no. 2, pp. 263–266. DOI: 10.1134/S1063782612020248.

12.Rogozhin M.V., Krimsky M.I., Rogalin V.E., Filin S.A. Modeling the thermomechanical processes in the output window of a high-power СО2 laser. Bulletin of the Russian Academy of Sciences: Physics, 2016, vol. 80, no. 10, pp. 1260–1266. DOI: 10.3103/S1062873816100166.

13.Rogozhin M.V., Rogalin V.E. and Krymskii M.I. Thermooptical processes in the window of a high-power gas laser. Optics and Spectroscopy, 2017, vol. 122, no. 5, pp. 843–849. DOI: 10.1134/S0030400X17050186.

14.Rogozhin M.V., Rogalin V.E., Krymskij M.I., Filin S.A., Rogalina N.A. High-power laser. RF Patent 2608309. (In Russian).

М. В. Рогожин, В. Е. Рогалин, М. И. Крымский, И. А. Каплунов

О ВОЗМОЖНОСТИ ПОВЫШЕНИЯ РЕСУРСА ОПТИКИ ВЫСОКОМОЩНЫХ ЛАЗЕРОВ ЗА СЧЕТ ИСПОЛЬЗОВАНИЯ ПОЛИКРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ОКОН С ЦЕНТРАЛЬНОЙ МОНОКРИСТАЛЛИЧЕСКОЙ ОБЛАСТЬЮ

Для мощных СО2-лазеров, излучающих в диапазоне 10 мкм, существует острый дефицит прозрачных материалов. В этой области прозрачны лишь некоторые весьма дорогие полупроводниковые и диэлектрические монокристаллы, обладающие низкими механическими и теплофизическими свойствами. Для мощного CO2-лазера рассмотрена конструкция выходного окна, изготовленного из поликристаллического алмаза с центральной областью, выполненной из монокристалла алмаза. Проведено численное моделирование оптической стойкости окна. Результаты сопоставлены с параметрами оптической стойкости окна традиционной конструкции из поликристаллического алмаза. Показано, что использование такого окна позволит вдвое увеличить выходную мощность лазера.

Ключевые слова: мощный CO2-лазер, выходное окно, поликристаллический алмаз, монокристаллический алмаз, оптическая стойкость

Библиография:

1.Рогалин В. Е. Прозрачные материалы для мощных импульсных СО2-лазеров // Известия ВУЗов. Материалы электронной техники. – 2013. – № 2. – С. 11–18.

2.Рогалин В. Е., Аранчий С. А. Поликристаллические алмазы – новые перспективы силовой оптики и электроники // Интеграл. – 2012. – № 5 (67). – C. 7–9.

3. Resistance of diamond optics to high-power fiber laser radiation / V. E. Rogalin, E. E. Ashkenazi, A. F. Popovich, V. G. Ral’chenko, V. I. Konov, S. M. Aranchii, M. V. Ruzin, S. A. Uspenskii // Russian Microelectronics.– 2012. – Vol. 41, no. 8. – P. 464–468. – DOI: 10.1134/S106373971208015X.

4.High-order stimulated Raman scattering in CVD single crystal diamond / A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, H. Rhee // Laser Phys. Lett. – 2007. – Vol. 4, iss. 5. – P. 350–353. – DOI: 10.1002/lapl.200610127.

5.Development of high quality single crystal diamond for novel laser applications / I. Friel., S. L. Geoghegan, D. J. Twitchen, G. A. Scarsbrook // Proc. SPIE 7838, Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defense Systems Technology VII. – 2010. –Vol. 783819.

6.Intrinsic and extrinsic absorption of chemical vapor deposition single-crystal diamond from the middle  ultraviolet to the far infrared / S. Webster, Y. Chen, G. Turri, A. Bennett, B. Wickham, M. Bass // J. Opt. Soc. Am. B. – 2015. – Vol. 32, no. 3. – P. 479–484. – DOI: 10.1364/JOSAB.32.000479.

7.Diamond optical components for high – power and high-energy laser applications / E. Anoikin, A. Muhr, An. Bennett, D. J. Twitchen, H. de Wit // Proc. of SPIE LASE, San Francisco, California, United States, 20 February 2015. – 2015. – Vol. 9346, 93460T. – Р. 1–9. – DOI: 10.1117/12.2079714.

8.Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation / A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelyan, V. A. Panarin, V. O. Pautov, A. V. Rus, S. A. Sukharev. – Quantum Electronics. – 2012. – Vol. 42, no. 2. – P. 95–98. – DOI: 10.1070/QE2012v042n02ABEH014734.

9.Prospects for large single crystal CVD diamond / S. Ho, C. S. Yan, Z. Liu, H. K. Mao, R. J. Hemley // Industrial Diamond Review. – 2006. – Vol. 66. – P. 28–32.

10.Fabrication of 1 Inch Mosaic Crystal Diamond Wafers / H. Yamada, A. Chayahara, Y. Mokuno, H. Umezawa, S. Shikata, N. Fujimori // Applied Physics Express. – 2010. – Vol. 3, no. 5. – P. 051301. – DOI: 10.1143/APEX.3.051301.

11.Combined Single-crystalline and Polycrystalline CVD Diamond Substrates for Diamond Electronics / A. L. Vikharev, A. M. Gorbachev, M. P. Dukhnovsky, A. B. Muchnikov, A. K. Ratnikova, Yu. Yu. Fedorov // Semiconductors. – 2012. – Vol. 46, no. 2. – P. 263–266. –DOI: 10.1134/S1063782612020248.

12.Modeling the thermomechanical processes in the output window of a high-power СО2 laser / M. V. Rogozhin, M. I. Krimsky, V. E. Rogalin, S. A. Filin // Bulletin of the Russian Academy of Sciences: Physics. – 2016. – Vol. 80, no. 10. – P. 1260–1266. – DOI: 10.3103/S1062873816100166.

13.Rogozhin M. V., Rogalin V. E. and Krymskii M. I. Thermooptical processes in the window of a high-power gas laser // Optics and Spectroscopy. – 2017. – Vol. 122. – No. 5. – P. 843–849. – DOI: 10.1134/S0030400X17050186.

14.Мощный лазер : пат. 2608309 Рос. Федерация / Рогожин М. В., Рогалин В. Е., Крымский М. И., Филин С. А., Рогалина Н. А. – № 2015131054 : заявл. 27.07.2015 ; опубл. 17.01.2017, Бюл. № 2.

 
PDF      

Библиографическая ссылка на статью

On the Possibility of Increasing the Service Life of High-Power Laser Optics Through the Use of Polycrystalline Diamond Windows with a Central Monocrystalline Area / M. V. Rogozhin, V. E. Rogalin, M. I. Krymskii, I. A. Kaplunov // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 1. - P. 34-40. -
DOI: 10.17804/2410-9908.2018.1.034-040. -
URL: http://dream-journal.org/issues/2018-1/2018-1_132.html
(accessed: 21.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru