Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2017 Выпуск 6

Все выпуски
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

E. V. Mostovshchikova, B. A. Gizhevsky, L. V. Ermakova

IR ABSORPTION SPECTRA OF TiO2 SUBMICRON POWDERS SYNTHESIZED BY THE COMBUSTION METHOD

DOI: 10.17804/2410-9908.2017.6.037-047

A method for synthesizing titanium dioxide using a combustion reaction has been developed, and TiO2 powders with anatase structure have been obtained. The average particle size
(~ 500 nm) and the size of the coherent scattering region (~ 15 nm) are determined, as well as the specific surface, which depends on the type of fuel used in the reaction (5.5 m2/g for glycine and 30.5 m2/g for citric acid). Annealing in the air at temperatures up to T = 1050 °C leads to a change in the structural modification, resulting in powders with a rutile structure. The IR optical density spectra D(λ) (1 to 12 μm) of TiO2 powders are studied. The intense absorption band in the spectra is found, the position of which depends on the structural modification of TiO2 (1.8 μm to 3.1 μm). The analysis of the D(λ) spectra demonstrates that this band is a superposition of two absorption bands, one of which has a maximum at 1.2 μm and can be associated with Ti3+ ions, the other being due to the polaron-type charge carriers.

Keywords: titanium dioxide, methods for synthesizing fine powders, anatase, rutile, IR spectroscopy

Bibliography:

  1. Hu X., Li. G., Yu J.C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir, 2010, vol. 26, no. 5, pp. 3031–3039. DOI: 10.1021/la902142b2
  2. Gupta S.M., Tripathi M. A review of TiO2 nanoparticles. Chinese Sci. Bull., 2011, vol. 56, pp. 1639–1657. DOI: 10.1007/s11434-011-4476-13
  3. Augugliaro V., Palmisano L., Sclafani A., Minero C., Pelizzetti E. Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions. Toxicological and Environmental Chemistry, 1988, vol. 16, pp. 89–109. DOI: 10.1080/027722488093572534
  4. Muscat J., Swamy V., Harrison N.M. First-principles calculations of the phase stability of TiO2. Physical Review B, 2002, vol. 65, pp. 224112. DOI: 10.1103/PhysRevB.65.2241125
  5. Tanaka K., Capule M.F.V., Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett., 1991, vol. 187, pp. 73–76. DOI: 10.1016/0009-2614(91)90486-S6
  6. Yang H., Zhu S., Pan N. Studying the mechanisms of titanium dioxide as ultravioletblocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci., 2004, vol. 92, pp. 3201–3210. DOI: 10.1002/app.203277
  7. Kuznetsov V.N., Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments. J. Phys. Chem. C, 2009, vol. 113, pp. 15110–15123. DOI: 10.1021/jp901034t8
  8. Tealdi C., Quartarone E., Galinetto P. et al. Flexible deposition of TiO2 electrodes for photocatalytic applications: Modulation of the crystal phase as a function of the layer thickness. J. Solid State Chem., 2013, vol. 199, pp. 1–6. DOI: 10.1016/j.jssc.2012.11.0199
  9. Vargesse A.A, Muralidhazan K. Anatase–brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate. J. Hazard. Mater., 2011, vol. 192, iss. 3, pp. 1314–1320. DOI: 10.1016/j.jhazmat.2011.06.03610
  10. Gonzalez R.J., Zallen R., Berger H. Infrared reflectivity and lattice fundamentals in anatase TiO2. Physical Review B, 1997, vol. 55, pp. 7014–7017. DOI: 10.1103/PhysRevB.55.701411
  11. Qu Z.-W., Kroes G.-J. Theoretical Study of the Electronic Structure and Stability of Titanium Dioxide Clusters (TiO2)n with n=1–9. J. Phys. Chem. B, 2006, vol. 110, pp. 8998–9007. DOI: 10.1021/jp056607p12
  12. Zanatta A.R. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. In: AIP Advances, 2017, vol. 7, pp. 075201. DOI: 10.1063/1.499213013
  13. Liu L., Zhao C., Li Y. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2−x Nanoparticles at Room Temperature. J. Phys. Chem. C, 2012, vol. 116, pp. 7904–7912. DOI: 10.1021/jp300932b14
  14. Wu J., Huang C. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China, 2010, vol. 4, pp. 120–126. DOI: 10.1007/s11705-009-0232-315
  15. Sarkar T., Gopinadhan K., Zhou J., Saha S., Coey J.M.D., Feng Y.P., Ariando, Venkatesan T. Electron Transport at the TiO2 Surfaces of Rutile, Anatase, and Strontium Titanate: The Influence of Orbital Corrugation. ACS Applied Materials & Interfaces, 2015, vol. 7, no. 44, pp. 24616–24621. DOI: 10.1021/acsami.5b06694

Е. В. Мостовщикова, Б. А. Гижевский, Л. В. Ермакова

СПЕКТРЫ ИК ПОГЛОЩЕНИЯ СУБМИКРОННЫХ ПОРОШКОВ TiO2, ПОЛУЧЕННЫХ МЕТОДОМ ГОРЕНИЯ

Разработан метод синтеза порошков диоксида титана с использованием реакции горения, и получены порошки TiO2 со структурой анатаза. Определены средний размер частиц (~500 нм), размер области когерентного рассеяния (~15 нм), и удельная поверхность, которая зависит от вида используемого в реакции топлива (5.5 м2/г для глицина и 30.5 м2/г для лимонной кислоты). Показано, что отжиг в воздушной атмосфере при Т=1050 оС приводит к изменению структурной модификации, в результате получены порошки со структурой рутила. Исследованы спектры оптической плотности D(λ) в ИК диапазоне (1 – 12 мкм). В спектрах оптической плотности обнаружена интенсивная полоса поглощения сложной формы, положение которой зависит от структурной модификации TiO2 (1.8 мкм – 3.1 мкм). Из анализа спектров следует, что данная полоса является суперпозицией двух полос поглощения, одна из которых имеет максимум при 1.2 мкм и может быть связана с ионами Ti3+, а другая – с поглощением света носителями заряда поляронного типа.

Благодарности: Работа по синтезу и аттестации исследованных порошков проведена в соот-ветствии с государственным заданием и планами НИР ИХТТ УрО РАН (тема НИОКТР № АААА-А16-116122810216-3), по оптическим исследованиям – выполнена в рамках государ-ственного задания ФАНО России для ИФМ УрО РАН (тема «Спин», № 01201463330).

Ключевые слова: диоксид титана, методы получения мелкодисперсных порошков, анатаз, рутил, ИК спектроскопия

Библиография:

  1. Hu X., Li. G., Yu J.C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications // Langmuir. – 2010. – Vol. 26, no. 5. – P. 3031–3039. – DOI: 10.1021/la902142b
  2. Gupta S.M., Tripathi M. A review of TiO2 nanoparticles // Chinese Sci. Bull. – 2011. – Vol. 56. – P. 1639–1657. – DOI: 10.1007/s11434-011-4476-1 3
  3. Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions / V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, E. Pelizzetti // Toxicological and Environmental Chemistry. – 1988. – Vol. 16. – P. 89–109. – DOI: 10.1080/02772248809357253
  4. Muscat J., Swamy V., Harrison N. M. First-principles calculations of the phase stability of TiO2 // Physical Review B. – 2002. – Vol. 65. – P. 224112. – DOI: 10.1103/PhysRevB.65.224112 5
  5. Tanaka K., Capule M. F. V., Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action // Chem Phys Lett. – 1991. – Vol. 187. – P. 73–76. – DOI: 10.1016/0009-2614(91)90486-S 6
  6. Yang H., Zhu S., Pan N. Studying the mechanisms of titanium dioxide as ultravioletblocking additive for films and fabrics by an improved scheme // J. Appl. Polym. Sci. – 2004. – Vol. 92. – P. 3201–3210. – DOI: 10.1002/app.20327 7
  7. Kuznetsov V. N., Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments // J. Phys. Chem. C. – 2009. – Vol. 113. – P. 15110–15123. – DOI: 10.1021/jp901034t 8
  8. Flexible deposition of TiO2 electrodes for photocatalytic applications: Modulation of the crystal phase as a function of the layer thickness / C. Tealdi, E. Quartarone, P. Galinetto et al. // J. Solid State Chem. – 2013. – Vol. 199. – P. 1–6. – DOI: 10.1016/j.jssc.2012.11.019 9
  9. Vargesse A. A., Muralidhazan K. Anatase–brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate // J. Hazard. Mater. – 2011. – Vol. 192, iss. 3. – P. 1314–1320. – DOI: 10.1016/j.jhazmat.2011.06.036 10
  10. Gonzalez R. J., Zallen R., Berger H. Infrared reflectivity and lattice fundamentals in anatase TiO2 // Physical Review B. – 1997. – Vol. 55. – P. 7014–7017. – DOI: 10.1103/PhysRevB.55.7014 11
  11. Qu Z.-W., Kroes G.-J. Theoretical Study of the Electronic Structure and Stability of Titanium Dioxide Clusters (TiO2)n with n = 1–9 // J. Phys. Chem. B. – 2006. – Vol. 110. – P. 8998–9007. – DOI: 10.1021/jp056607p 12
  12. Zanatta A. R. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2 // AIP Advances. – 2017. – Vol. 7. – P. 075201. – DOI: 10.1063/1.4992130 13
  13. Liu L., Zhao C., Li Y. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2−x Nanoparticles at Room Temperature // J. Phys. Chem. C. – 2012. – Vol. 116. – P. 7904–7912. – DOI: 10.1021/jp300932b14. 14
  14. Wu J., Huang C. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation // Front. Chem. Eng. China. – 2010. – Vol. 4. – P. 120–126. – DOI: 10.1007/s11705-009-0232-3 15
  15. Electron Transport at the TiO2 Surfaces of Rutile, Anatase, and Strontium Titanate: The Influence of Orbital Corrugation / T. Sarkar, K. Gopinadhan, J. Zhou, S Saha., J. M. D. Coey, Y. P. Feng, Ariando, T. Venkatesan // ACS Applied Materials & Interfaces. – 2015. – Vol. 7, no. 44. – P. 24616–24621. – DOI: 10.1021/acsami.5b06694
       
PDF      

Библиографическая ссылка на статью

Mostovshchikova E. V., Gizhevsky B. A., Ermakova L. V. Ir Absorption Spectra of Tio2 Submicron Powders Synthesized by the Combustion Method // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 6. - P. 37-47. -
DOI: 10.17804/2410-9908.2017.6.037-047. -
URL: http://dream-journal.org/issues/2017-6/2017-6_152.html
(accessed: 06.10.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru