Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2017 Выпуск 5

Все выпуски
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva

IMPROVING THE STRENGTH OF THE AISI 321 AUSTENITIC STAINLESS STEEL BY FRICTIONAL TREATMENT

DOI: 10.17804/2410-9908.2017.5.043-062

The influence of frictional treatment on the micromechanical characteristics, phase composition, residual stresses, surface roughness and damage of the AISI 321 austenitic stainless steel is investigated. The frictional treatment is performed with a hemispherical synthetic diamond indenter, loaded with 294 N, in a non-oxidizing argon medium, by varying the number of indenter strokes over the same part of the surface. It has been established that, to achieve substantial hardening, high quality and sufficient contact strength of the steel surface, it is expedient that, with the used process parameters, the frictional treatment of the AISI 321 steel be carried out with the number of double strokes not exceeding 14. Herewith, frictional treatment with 14 double strokes increases microhardness by a factor of 3.7, up to 730 HV0.025, while providing low surface roughness with Ra = 0.23 mm and highly increased ability of the surface to resist mechanical contact, this being supported by the data of kinetic microindentation.

Acknowledgements: This work was done within the Complex program of UB RAS, project no. 15-10-1-22, within the state order of FASO Russia on the subject “Structure” no. 01201463331 and with partial financial support of the Russian Foundation for Basic Research grant no. 15-08-06754_a. Electron scanning microscopy, optical profilometry and micromechanical tests were performed in Collective Use Center “Plastometriya” of the Institute of Engineering Science UB RAS.

Keywords: austenitic stainless steel, frictional treatment, microhardness, kinetic micro- indentation, phase composition, residual stresses, surface roughness, damage

Bibliography:

  1. Sun Y. Sliding wear behavior of surface mechanical attrition treated AISI 304 stainless steel. Tribology International, 2013, vol. 57, pp. 67–75. DOI: 10.1016/j.triboint.2012.07.015
  2. Lee H., Kim D., Jung J., Pyoun Y., Shin K. Influence of peening on corrosion properties of AISI 304 stainless steel. Corrosion Science, 2009, vol. 51, iss. 12, pp. 2826–2830. DOI: 10.1016/j.corsci.2009.08.008
  3. Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’ management. Journal of Sound and Vibration, 2007, vol. 308, iss. 3–5, pp. 855–866. DOI: 10.1016/j.jsv.2007.03.054
  4. Baraz V.P., Kartak B.P., Mineeva O.N. Special features of friction hardening of austenitic steel with unstable gamma-phase. Metal Science and Heat Treatment, 2011, vol. 52, iss. 9–10, pp. 473–475. DOI: 10.1007/s11041-010-9302-x
  5. Hajian M., Abdollah-zadeh A., Rezaei-Nejad S.S., Assadi H., Hadavi S.M.M., Chung K., Shokouhimehr M. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Applied Surface Science, 2014, vol. 308, pp. 184–192. DOI: 10.1016/j.apsusc.2014.04.132
  6. Lin Y., Wang J., Zeng D., Huang R., Fan H. Advance complex liquid nitriding of stainless steel AISI 321 surface at 430 C. Journal of Materials Engineering and Performance, 2013, vol. 22, no. 9, pp. 2567–2573. DOI: 10.1007/s11665-013-0545-8
  7. Levcovici S.M., Levcovici D.T., Munteanu V., Paraschiv M.M., Preda A. Laser surface hardening of austenitic stainless steel. Journal of Materials Engineering and Performance, 2000, vol. 9, no. 5, pp. 536–540. DOI: 10.1361/105994900770345665
  8. Golzar Shahri M., Salehi M., Hosseini S.R., Naderi M. Effect of nanostructured grains on martensite formation during plasma nitriding of AISI 321 austenitic stainless steel. Surface and Coatings Technology, 2017, vol. 310, pp. 231–238. DOI: 10.1016/j.surfcoat.2016.12.019
  9. Makarov A.V. Nanostructuring friction treatment of carbon and low-alloy steels. In: Perspektivnye Materialy. T. IV: Uchebnoe posobie [Promising Materials, vol. IV: Schoolbook], D.L. Merson, ed., Tolyatti, TGU Publ., 2011, 434 p. (In Russian)
  10. Makarov A.V., Skorynina P.A., Osintseva A.L., Yurovskikh A.S., Savrai R.A. Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment. Obrabotka Metallov, 2015, no. 4 (69), pp. 80–92. DOI: 10.17212/1994-6309-2015-4-80-92 (In Russian).
  11. Makarov A.V., Korshunov L.G. Strength and wear resistance of nanocrystal structures on friction surfaces of steels with martensitic base. Russian Physics Journal, 2004, vol. 47, no. 8, pp. 857–871. DOI: 10.1007/s11182-005-0005-5
  12. Wang T.S., Yang J., Shang C.J., Li X.Y, Lv B., Zhang M., Zhang F.C. Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment. Surface and Coatings Technology, 2008, vol. 202, iss. 16, pp. 4036–4040. DOI: 10.1016/j.surfcoat.2008.02.013
  13. Li J.G., Umemoto M., Todaka Y., Tsuchiya K. Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation. Journal of Alloys and Compounds, 2007, vol. 434–435, pp. 290–293. DOI: 10.1016/j.jallcom.2006.08.167 14
  14. Makarov A.V., Savrai R.A., Pozdejeva N.A., Smirnov S.V., Vichuzhanin D.I., Korshunov L.G., Malygina I.Yu. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surface and Coatings Technology, 2010, vol. 205, iss. 3, pp. 841–852. DOI: 10.1016/j.surfcoat.2010.08.025
  15. Vychuzhanin D.I., Makarov A.V., Smirnov S.V., Pozdeeva N.A., Malygina I.Y. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter. Journal of Machinery Manufacture and Reliability, 2011, vol. 40, iss. 6, pp. 554–560. DOI: 10.3103/S1052618811050190
  16. Kuznetsov V.P., Makarov A.V., Psakhie S.G., Savrai R.A., Malygina I.Yu., Davydova N.A. Tribological aspects in nanostructuring burnishing of structural steels. Physical Mesomechanics, 2014, vol. 17, iss. 4, pp. 250–264. DOI: 10.1134/S102995991404002X
  17. Makarov A.V., Skorynina P.A., Yurovskikh A.S., Osintseva A.L. Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel. In: AIP Conference Proceedings, 2016, vol. 1785, no. 040035. DOI: 10.1063/1.4967092
  18. Wang T., Yu J., Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surface and Coatings Technology, 2006, vol. 200, pp. 4777–4781. DOI: 10.1016/j.surfcoat.2005.04.046
  19. Pugacheva N.B., Michurov N.S., Bykova T.M. structure and properties of the Al/SiC composite material. The Physics of Metals and Metallography, 2016, vol. 117, no. 6, pp. 634–640. DOI: 10.1134/S0031918X16060119
  20. Pugacheva N.B., Michurov N.S., Senaeva E.I., Bykova T.M. Structure and thermophysical properties of aluminum-matrix composites. The Physics of Metals and Metallography, 2016, vol. 117, no. 11, pp. 1144–1151. DOI: 10.1134/S0031918X16110119
  21. Savrai R.A., Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. The behavior of gas powder laser clad NiCrBSi coatings under contact loading. Journal of Materials Engineering and Performance, 2016, vol. 25, iss. 3, pp. 1068–1075. DOI: 10.1007/s11665-016-1925-7
  22. Pugacheva N.B., Trushina E.B., Bykova T.M. Research on the tribological properties of iron borides as diffusion coatings. Journal of Friction and Wear, 2014, vol. 35, no. 6, pp. 489–496. DOI: 10.3103/S1068366614060117
  23. Pugacheva N.B., Bykova T.M., Trushina E.B. Effect of the composition of the steel base on the structure and properties of diffusion boride coatings. Uprochnyayushchie Tekhnologii i Pokrytiya, 2013, no. 4, pp. 3–7. (In Russian).
  24. Makarov A.V., Savrai R.A., Gorkunov E.S., Yurovskikh A.S., Malygina I.Yu., Davydova N.A. Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment. Physical Mesomechanics, 2015, vol. 18, iss. 1, pp. 43–57. DOI: 10.1134/S1029959915010063
  25. Makarov A.V., Soboleva N.N., Savrai R.A., Malygina I.Yu. The improvement of micromechanical properties and wear resistance of chrome-nickel laser coating using the finishing friction treatment. Science Vector of Togliatti State University, 2015, no. 4 (34), pp. 60–67. DOI: 10.18323/2073-5073-2015-4-60-67 (In Russian).
  26. Smirnov S.V., Pugacheva N.B., Myasnikova M.V., Smirnova E.O. Heterogeneity of an Al alloy weld and simulation of its elastic deformation. Fizicheskaya Mezomekhanika, 2014, no. 1, pp. 51–56. (In Russian).
  27. Smirnov S.V., Pugacheva N.B., Myasnikova M.V. Evaluating ultimate strains to fracture of the zones of a diffusion aluminide coating. Deformatsiya i Razrushenie Materialov, 2014, no. 12, pp. 17–22. (In Russian).
  28. Pugacheva N.B., Myasnikova M.V., Michurov N.S. Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert. The Physics of Metals and Metallography, 2016, vol. 117, no. 2, pp. 195–203. DOI: 10.7868/S0015323015120074
  29. Makarov A.V., Korshunov L.G., Osintseva A.L. Sposob Obrabotki Stalnykh Izdeliy [Method for Steel Articles Working]. RU Patent 2194773, 2002. (In Russian).
  30. Rusakov A.A. Rentgenografiya Metallov [Roentgenography of Metals]. Moscow, Atomizdat Publ., 1977, 480p. (In Russian).
  31. ISO 14577-1:2015. Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.
  32. Oliver W.C., Pharr J.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, vol. 7, no. 6, pp. 1564–1583. DOI: 10.1557/JMR.1992.1564
  33. Makarov A.V., Savrai R.A., Schastlivtsev V.M., Tabatchikova T.I., Yakovleva I.L., Egorova L.Yu. Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading. The Physics of Metals and Metallography, 2011, vol. 111, iss. 1, pp. 95–109. DOI: 10.1134/S0031918X11010091
  34. Benito J.A., Jorba J., Manero J.M., Roca A. Change of Young's modulus of cold-deformed pure iron in a tensile test. Metallurgical and Materials Transactions A, 2005, vol. 36, iss. 12, pp. 3317–3324. DOI: 10.1007/s11661-005-0006-6
  35. Cheng Y.T., Cheng C.M. Relationships between hardness, elastic modulus and the work of indentation. Applied Physics Letters, 1998, vol. 73, no. 5, pp. 614–618. DOI: 10.1063/1.121873
  36. Page T.F., Hainsworth S.V. Using nanoindentation techniques for the characterization of coated systems: a critique. Surface and Coatings Technology, 1993, vol. 61, iss. 1–3, pp. 201–208. DOI: 10.1016/0257-8972(93)90226-E
  37. Mayrhofer P.H., Mitterer C., Musil J. Structure-property relationships in single- and dualphase nanocrystalline hard coatings. Surface and Coatings Technology, 2003, vol. 174–175, pp. 725–731. DOI: 10.1016/S0257-8972(03)00576-0
  38. Milman Yu.V., Chugunova S.I., Goncharova I.V. Plasticity characteristic defined indentation method. Voprosy atomnoy nauki i tekhniki, 2011, iss. 4, pp. 182–187. (In Russian).

Р. А. Саврай, А. В. Макаров, И. Ю. Малыгина, С. А. Роговая, А. Л. Осинцева

ПОВЫШЕНИЕ ПРОЧНОСТИ КОРРОЗИОННОСТОЙКОЙ АУСТЕНИТНОЙ СТАЛИ AISI 321 ФРИКЦИОННОЙ ОБРАБОТКОЙ

Исследовано влияние фрикционной обработки полусферическим индентором из синтетического алмаза в безокислительной среде аргона и нагрузке на индентор 294 Н с различным числом проходов индентора по одному участку поверхности на микромеханические характеристики, фазовый состав, остаточные напряжения, шероховатость и поврежденность поверхностного слоя коррозионностойкой аустенитной стали AISI 321. Установлено, что для обеспечения существенного упрочнения, высокого качества поверхности и стойкости при контактных нагрузках, фрикционную обработку стали AISI 321 при использованных технологических параметрах целесообразно проводить с числом двойных проходов не более 14. При этом в результате фрикционной обработки с числом двойных проходов индентора 14, микротвердость стали AISI 321 возрастает в 3,7 раза до 730 HV0,025, обеспечивается низкая шероховатость поверхности с параметром Ra = 0,23 мкм, а также значительно повышается способность поверхности сопротивляться механическому контактному воздействию, что подтверждается данными микроиндентирования.

Благодарности: Работа выполнена в рамках Комплексной программы УрО РАН (проект № 15-10-1-22) и в рамках государственного задания ФАНО России по теме «Структура» № 01201463331 при частичной поддержке гранта РФФИ 15-08-06754_а. Электронная сканирующая микроскопия, профилометрия и микромеханические испытания выполнены в ЦКП «Пластометрия» ИМАШ УрО РАН.

Ключевые слова: коррозионностойкая аустенитная сталь, фрикционная обработка, микротвердость, кинетическое микроиндентирование, фазовый состав, остаточные напряжения, шероховатость поверхности, поврежденность

Библиография:

  1. Sun Y. Sliding wear behavior of surface mechanical attrition treated AISI 304 stainless steel // Tribology International. – 2013. – Vol. 57. – P. 67–75. – DOI: 10.1016/j.triboint.2012.07.015
  2. Influence of peening on corrosion properties of AISI 304 stainless steel / H. Lee, D. Kim, J. Jung, Y. Pyoun, K. Shin // Corrosion science. – 2009. – Vol. 51, iss. 12. – P. 2826–2830. – DOI: 10.1016/j.corsci.2009.08.008
  3. Mordyuk B. N., Prokopenko G. I. Ultrasonic impact peening for the surface properties’ management // Journal of Sound and Vibration. – 2007. – Vol. 308, iss. 3–5. – P. 855–866. – DOI: 10.1016/j.jsv.2007.03.054
  4. Baraz V. P., Kartak B. P., Mineeva O. N. Special features of friction hardening of austenitic steel with unstable gamma-phase // Metal Science and Heat Treatment. – 2011. – Vol. 52, iss. 9–10. – P. 473–475. – DOI: 10.1007/s11041-010-9302-x
  5. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing / M. Hajian, A. Abdollah-zadeh, S. S. Rezaei-Nejad, H. Assadi, S. M. M. Hadavi, K. Chung, M. Shokouhimehr // Applied Surface Science. – 2014. – Vol. 308. – P. 184–192. – DOI: 10.1016/j.apsusc.2014.04.132
  6. Advance Complex Liquid Nitriding of Stainless Steel AISI 321 Surface at 430 °C / Y. Lin, J. Wang, D. Zeng, R. Huang, H. Fan // Journal of Materials Engineering and Performance. – 2013. – Vol. 22, no. 9. – P. 2567–2573. – DOI: 10.1007/s11665-013-0545-8
  7. Laser Surface Hardening of Austenitic Stainless Steel / S. M. Levcovici, D. T. Levcovici, V. Munteanu, M. M. Paraschiv, A. Preda // Journal of Materials Engineering and Performance. – 2000. – Vol. 9, no. 5. – P. 536–540. – DOI: 10.1361/105994900770345665
  8. Effect of nanostructured grains on martensite formation during plasma nitriding of AISI 321 austenitic stainless steel / M. Golzar Shahri, M. Salehi, S. R. Hosseini, M. Naderi // Surface and Coatings Technology. – 2017. – Vol. 310. – P. 231–238. – DOI:10.1016/j.surfcoat.2016.12.019
  9. Макаров А. В. Наноструктурирующая фрикционная обработка углеродистых и низколегированных сталей / Т. IV : Перспективные материалы : учебное пособие / под ред. Д. Л. Мерсона. – Тольятти : ТГУ, 2011. – 434 с. – Гл. 3. – С. 123–208.
  10. Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой / А. В. Макаров, П. А. Скорынина, А. Л. Осинцева, А. С. Юровских, Р. А. Саврай // Обработка металлов: технология, оборудование, инструменты. – 2015. – № 4 (69). – С. 80–92.
  11. Makarov A. V., Korshunov L. G. Strength and wear resistance of nanocrystal structures on friction surfaces of steels with martensitic base // Russian Physics Journal. – 2004. – Vol. 47, no. 8. – P. 857–871. – DOI: 10.1007/s11182-005-0005-5
  12. Sliding friction surface microstructure and wear resistance of 9SiCr steel with lowtemperature austempering treatment / T. S. Wang, J. Yang, C. J. Shang, X. Y. Li, B. Lv, M. Zhang, F. C. Zhang // Surface and Coatings Technology. – 2008. – Vol. 202, iss. 16. – P. 4036–4040. – DOI: 10.1016/j.surfcoat.2008.02.013
  13. Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation / J. G. Li, M. Umemoto, Y. Todaka, K. Tsuchiya // Journal of Alloys and Compounds. – 2007. – Vol. 434–435. – P. 290–293. – DOI: 10.1016/j.jallcom.2006.08.167
  14. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension / A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, I. Yu. Malygina // Surface and Coatings Technology. – 2010. – Vol. 205, iss. 3. – P. 841–852. – DOI: 10.1016/j.surfcoat.2010.08.025
  15. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter / D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, I. Y. Malygina // Journal of Machinery Manufacture and Reliability. – 2011. – Vol. 40, iss. 6. – P. 554–560. – DOI: 10.3103/S1052618811050190
  16. Трибологические аспекты наноструктурирующего выглаживания конструкционных сталей / В. П. Кузнецов, А. В. Макаров, С. Г. Псахье, Р. А. Саврай, И. Ю. Малыгина, Н. А. Давыдова // Физическая мезомеханика. – 2014. – Т. 17, № 3. – С. 14–30.
  17. Effect of the Technological Conditions of Frictional Treatment on the Structure, Phase Composition and Hardening of Metastable Austenitic Steel / A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, A. L. Osintseva // AIP Conference Proceedings. – 2016. – Vol. 1785, no. 040035. – DOI: 10.1063/1.4967092
  18. Wang T., Yu J., Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel // Surface and Coatings Technology. – 2006. – Vol. 200. – P. 4777–4781. – DOI: 10.1016/j.surfcoat.2005.04.046
  19. Pugacheva N. B., Michurov N. S., Bykova T. M. Structure and properties of the Al/SiC composite material // The Physics of Metals and Metallography. – 2016. – Vol. 117, no. 6. – P. 634–640. – DOI: 10.1134/S0031918X16060119
  20. Structure and thermophysical properties of aluminum-matrix composites / N. B. Pugacheva, N. S. Michurov, E. I. Senaeva, T. M. Bykova // The Physics of Metals and Metallography. – 2016. – Vol. 117, no. 11. – P. 1144–1151. – DOI: 10.1134/S0031918X16110119
  21. The Behavior of Gas Powder Laser Clad NiCrBSi Coatings Under Contact Loading / R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva // Journal of Materials Engineering and Performance. – 2016. – Vol. 25, iss.3. – P. 1068–1075. – DOI: 10.1007/s11665-016-1925-7
  22. Pugacheva N. B., Trushina E. B., Bykova T. M. Research on the tribological properties of iron borides as diffusion coatings // Journal of Friction and Wear. – 2014. – Vol. 35, no. 6. – P. 489–496. – DOI: 10.3103/S1068366614060117
  23. Пугачева Н. Б., Быкова Т. М., Трушина Е. Б. Влияние состава стали-основы на структуру и свойства диффузионных боридных покрытий // Упрочняющие технологии и покрытия. – 2013. – № 4. – С. 3–7.
  24. Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment / A. V. Makarov, R. A. Savrai, E. S. Gorkunov, A. S. Yurovskikh, I. Yu. Malygina, N. A. Davydova // Physical Mesomechanics. – 2015. – Vol. 18, iss. 1. – P. 43–57. – DOI: 10.1134/S1029959915010063
  25. Повышение микромеханических свойств и износостойкости хромоникелевого лазерного покрытия финишной фрикционной обработкой / А. В. Макаров, Н. Н. Соболева, Р. А. Саврай, И. Ю. Малыгина // Вектор науки ТГУ. – 2015. – № 4 (34). – С. 60–67. – DOI: 10.18323/2073-5073-2015-4-60-67
  26. Структурная неоднородность сварного соединения алюминиевого сплава и моделирование его упругой деформации / С. В. Смирнов, Н. Б. Пугачева, М. В. Мясникова, Е. О. Смирнова // Физическая мезомеханика. – 2014. – № 1. – С. 51–56.
  27. Смирнов С. В., Пугачева Н. Б., Мясникова М. В. Определение предельных деформаций до разрушения зон диффузионных алюминидных покрытий // Деформация и разрушение материалов. – 2014. – № 12. – С. 17–22.
  28. Pugacheva N. B., Myasnikova M. V., Michurov N. S. Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert // The Physics of Metals and Metallography. – 2016. – Vol. 117, no. 2. – P. 195–203. – DOI: 10.7868/S0015323015120074
  29. Способ обработки стальных изделий : пат. №2194773 Рос. Федерация / Макаров А. В., Коршунов Л. Г., Осинцева А. Л., БИМП. – 2002. – № 35. 30. Русаков А. А. Рентгенография металлов. – М : Атомиздат, 1977. – 480 с.
  30. ГОСТ Р 8.748-2011 (ИСО 14577-1:2002). Государственная система обеспечения единства измерений (ГСИ). Металлы и сплавы. Измерение твердости и других характеристик материалов при инструментальном индентировании. – Ч. 1. Метод испытаний.
  31. Русаков А. А. Рентгенография металлов. – М. : Атомиздат, 1977. – 480 с.
  32. Oliver W. C., Pharr J. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // Journal of Materials Research. – 1992. – Vol. 7, no. 6. – P. 1564–1583. – DOI: 10.1557/JMR.1992.1564
  33. Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading / A. V. Makarov, R. A. Savrai, V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, L. Yu. Egorova // The Physics of Metals and Metallography. – 2011. – Vol. 111, iss. 1. – P. 95–109. – DOI: V10.1134/S0031918X11010091
  34. Change of Young's modulus of cold-deformed pure iron in a tensile test / J. A. Benito, J. Jorba, J. M. Manero, A. Roca // Metallurgical and Materials Transactions A. – 2005. – Vol. 36, iss. 12. – P. 3317–3324. – DOI: 10.1007/s11661-005-0006-6
  35. Cheng Y. T., Cheng C. M. Relationships between hardness, elastic modulus and the work of indentation // Applied Physics Letters. – 1998. – Vol. 73, no. 5. – P. 614–618. – DOI: 10.1063/1.121873
  36. Page T. F., Hainsworth S. V. Using nanoindentation techniques for the characterization of coated systems: a critique // Surface and Coatings Technology. – 1993. – Vol. 61, iss. 1–3. – P. 201–208. – DOI: 10.1016/0257-8972(93)90226-E
  37. Mayrhofer P. H., Mitterer C., Musil J. Structure-property relationships in single- and dualphase nanocrystalline hard coatings // Surface and Coatings Technology. – 2003. – Vol. 174–175. – P. 725–731. – DOI: 10.1016/S0257-8972(03)00576-0
  38. Мильман Ю. В., Чугунова С. И., Гончарова И. В. Характеристика пластичности, определяемая методом индентирования // Вопросы атомной науки и техники. – 2011. – № 4. – С. 182–187.
             
PDF      

Библиографическая ссылка на статью

Improving the Strength of the Aisi 321 Austenitic Stainless Steel by Frictional Treatment / R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 5. - P. 43-62. -
DOI: 10.17804/2410-9908.2017.5.043-062. -
URL: http://dream-journal.org/issues/2017-5/2017-5_149.html
(accessed: 21.11.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru