A. P. Nosov, I. V. Gribov, N. A. Moskvina, A. V. Druzhinin, V. I. Osotov, V. A. Bespalov, B. A. Loginov
MAGNETOELECTRIC SENSORS OF MAGNETIC FIELD BASED ON LAMINATED STRUCTURES WITH COMPOSITE MAGNETOSTRICTIVE LAYERS
DOI: 10.17804/2410-9908.2016.5.030-038 The magnetoelectric effect (ME) in three-layered laminated structures of the “composite magnetostrictive ferromagnetic material / ferroelectric / composite magnetostrictive ferromagnetic material” type is investigated. The composite magnetostrictive ferromagnetic material consists of “Metglas”-type amorphous ribbons on which magnetostrictive Fe0.72Ga0.28 or Fe0.62Co0.19Ga0.19 thin films are deposited by pulsed laser deposition. The ME is investigated for dc and ac magnetic fields in the frequency range from 20 Hz to 10 kHz. It is shown experimentally that the deposition of the Fe0.72Ga0.28 films increases the maximum value of the ME in laminated structures in the whole frequency range investigated, while the deposition of the Fe0.62Co0.19Ga0.19 films decreases this value. The laminated structures with Fe0.72Ga0.28 films operating under excitation with the frequency of 110 Hz are the most appropriate for applications in magnetic nondestructive testing.
Keywords: nondestructive testing, magnetic field sensor, magnetoelectric effect, amorphous alloy, thin films, galfenol Bibliography:
1. Romashev L., Rinkevich A., Yuvchenko A., Burkhanov A. Magnetic field sensors based in Fe/Cr superlattices. Sensors and Actuators A: Physical, 2001, vol. 91, iss. 1–2, pp. 30–33. DOI: 10.1016/S0924-4247(01)00482-4.
2. Naumova L.I., Milyaev M.A., Chernyshova T.A., Proglyado V.V., Kamenskii I.Yu., Ustinov V.V. Hysteresis-free spin valves with a noncollinear configuration of magnetic anisotropy. Physics of the Solid State, vol. 56, iss. 6, pp. 1125–1130. DOI: 10.1134/S1063783414060274.
3. Lawes G., Srinivasan G. Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D: Appl. Phys, 2011, vol. 44, pp. 243001 (22). DOI:10.1088/0022-3727/44/24/243001.
4. Petrov V.M., Srinivasan G. Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys. Rev. B, 2008, vol. 78, pp. 184421 (8). DOI: 10.1103/PhysRevB.78.184421.
5. Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett., 2010, vol. 96, pp. 192502 (3). DOI: 10.1063/1.3428774.
6. Magnetic Alloy 2605SA1 (iron-based). Tech. Bulletin, ref: 2605SA106192009, Metglas Inc., Conway, SC, 2009.
7. Passamani E.C., Larica C., Moscon P.S., Mendoza Zelis P., Sanchez F.H. Out-of-plane anisotropy and low field induced magnetic domain reorientation in Al/Metglas-2605S2/Al trilayer sensors. J. Appl. Phys., 2010, vol. 110, pp. 043906 (7). DOI: 10.1063/1.3622339.
8. Gammamet®. Research and Production Enterprise. (In Russian). Available at: http://www.gammamet.ru/ru/gm440a.htm
9. Atulasimha Jayasimha, Flatau Alison B. Topical Review. A review of magnetostrictive iron–gallium alloys. Smart Materials and Structures, 2011, vol. 20, no. 4, pp. 043001 (15). DOI:10.1088/0964-1726/20/4/043001.
10. Jen S.U., Tsai T.L., Kuo P.C., Chi W.L., Cheng W. C. Magnetostrictive and structural properties of FeCoGa films. J. Appl. Phys., 2010, vol. 107, iss. 1, pp. 013914 (4). DOI: 10.1063/1.3284962.
11. OptoSystems. The leading manufacturer of lasers for medicine, science and technology in Russia. (In Russia). Available at: http://www.optosystems.ru/eng/index.php
12. Sreenivasulu G., Petrov V.M., Fetisov L.Y., Fetisov Y.K., Srinivasan G. Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Physical Review B, 2012, vol. 86, pp. 214405 (7). DOI: 10.1103/PhysRevB.86.214405.
13. Van der Burgt C.M. Dynamical parameters in the magneto-strictive excitation of extensional and torsional vibrations in ferrites. Philips Res. Rep., 1953, vol. 8, pp. 91–132.
14. Morley N.A., Javed A., Gibbs M.R. Effect of a forming field on the magnetic and structural properties of thin Fe–Ga films. J. Appl. Phys., 2009, vol. 105, pp. 07A912 (4). DOI: 10.1063/1.3059612.
15. Callen Herbert B., Goldberg N. Magnetostriction of Polycrystalline Aggregates. J. Appl. Phys., 1965, vol. 36, pp. 976–977. DOI: 10.1063/1.1714285.
16. Wuttig Manfred, Dai Liyang, Cullen J. Elasticity and magnetoelasticity of Fe–Ga solid solutions. Appl. Phys. Lett., 2002, vol. 80, pp. 1135 (3). DOI: 10.1063/1.1450045.
А. П. Носов, И. В. Грибов, Н. А. Москвина, А. В. Дружинин, В. И. Осотов, В. А. Беспалов, Б. А. Логинов
МАГНИТОЭЛЕКТРИЧЕСКИЕ ДАТЧИКИ МАГНИТНОГО ПОЛЯ НА ОСНОВЕ ЛАМИНАТНЫХ СТРУКТУР С КОМПОЗИТНЫМИ МАГНИТОСТРИКЦИОННЫМИ СЛОЯМИ
Исследован магнитоэлектрический эффект (МЭ) в ламинатных структурах типа композитный магнитострикционный ферромагнетик /сегнетоэлектрик/ композитный магнитострикционный ферромагнетик. Композитные слои получены импульсным лазерным осаждением тонких магнитострикционных пленок составов Fe0.72Ga0.28 и Fe0.62Co0.19Ga0.19 на аморфные ленты сплава типа «Метглас». Исследованы зависимости магнитоэлектрического эффекта от статических и переменных магнитных полей в диапазоне частот от 20 Гц до 10 кГц. Экспериментально показано, что нанесение магнитострикционных пленок состава Fe0.72Ga0.28 приводит к увеличению, а пленок состава Fe0.62Co0.19Ga0.19 - к уменьшению максимальной величины магнитоэлектрического эффекта во всем исследованном интервале частот. Для решения задач магнитного неразрушающего контроля наилучшую чувствительность обеспечивают структуры с магнитострикционной пленкой Fe0.72Ga0.28 в условиях возбуждения переменным полем с частотой 110 Гц.
Ключевые слова: неразрушающий контроль, датчик магнитного поля, магнитоэлектрический эффект, аморфный сплав, тонкие пленки, галфенол Библиография:
1. Magnetic field sensors based in Fe/Cr superlattices / L. Romashev, A. Rinkevich, A. Yuvchenko, A. Burkhanov // Sensors and Actuators A: Physical. – 2001. – Vol. 91, iss. 1–2. – P. 30–33. – DOI: 10.1016/S0924-4247(01)00482-4.
2. Hysteresis-free spin valves with a noncollinear configuration of magnetic anisotropy / L. I. Naumova, M. A. Milyaev, T. A. Chernyshova, V. V. Proglyado, I. Yu. Kamenskii, V. V. Ustinov // Physics of the Solid State. – Vol. 56, iss. 6. – P. 1125–1130. – DOI: 10.1134/S1063783414060274.
3. Lawes G., Srinivasan G. Introduction to magnetoelectric coupling and multiferroic films // J. Phys. D: Appl. Phys. – 2011. – Vol. 44. – P. 243001 (22). – DOI:10.1088/0022-3727/44/24/243001.
4. Petrov V. M., Srinivasan G. Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers // Phys. Rev. B. – 2008. – Vol. 78. – P. 184421 (8). – DOI: 10.1103/PhysRevB.78.184421.
5. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics / S. K. Mandal, G. Sreenivasulu, V. M. Petrov, G. Srinivasan // Appl. Phys. Lett. – 2010. – Vol. 96. – P. 192502 (3). – DOI: 10.1063/1.3428774.
6. Magnetic Alloy 2605SA1 (iron-based) // Tech. Bulletin. Ref: 2605SA106192009. – Metglas Inc., Conway, SC, 2009.
7. Out-of-plane anisotropy and low field induced magnetic domain reorientation in Al/Metglas-2605S2/Al trilayer sensors / E. C. Passamani, C. Larica, P. S. Moscon, P. Mendoza Zelis, F. H. Sanchez // J. Appl. Phys. – 2010. – Vol. 110. – P. 043906 (7). – DOI: 10.1063/1.3622339.
8. ГМ440А. Магнитные свойства кольцевых магнитопроводов из аморфных и нанокристаллических сплавов в защитных контейнерах. – URL: http://www.gammamet.ru/ru/gm440a.htm
9. Atulasimha Jayasimha, Flatau Alison B. Topical Review. A review of magnetostrictive iron–gallium alloys // Smart Materials and Structures. – 2011. – Vol. 20, no. 4. – P. 043001 (15). – DOI:10.1088/0964-1726/20/4/043001.
10. Magnetostrictive and structural properties of FeCoGa films / S. U. Jen, T. L. Tsai, P. C. Kuo, W. L. Chi, W. C. Cheng // J. Appl. Phys. – 2010. – Vol. 107, iss. 1. – P. 013914 (4). – DOI: 10.1063/1.3284962.
11. OptoSystems. The leading manufacturer of lasers for medicine, science and technology in Russia. – URL: http://www.optosystems.ru/eng/index.php
12. Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys / G. Sreenivasulu, V. M. Petrov, L. Y. Fetisov, Y. K. Fetisov, G. Srinivasan // Physical Review B. – 2012. – Vol. 86. – P. 214405 (7). – DOI: 10.1103/PhysRevB.86.214405.
13. Van der Burgt C. M. Dynamical parameters in the magneto-strictive excitation of extensional and torsional vibrations in ferrites // Philips Res. Rep. – 1953. – Vol. 8. – P. 91–132.
14. Morley N. A., Javed A., Gibbs M. R. Effect of a forming field on the magnetic and structural properties of thin Fe–Ga films // J. Appl. Phys. – 2009. – Vol. 105. – P. 07A912 (4). – DOI: 10.1063/1.3059612.
15. Callen Herbert B., Goldberg N. Magnetostriction of Polycrystalline Aggregates // J. Appl. Phys. – 1965. – Vol. 36. – P. 976–977. – DOI: 10.1063/1.1714285.
16. Wuttig Manfred, Dai Liyang, Cullen J. Elasticity and magnetoelasticity of Fe–Ga solid solutions // App. Phys. Lett. – 2002. – Vol. 80. – P. 1135 (3). – DOI: 10.1063/1.1450045.
Библиографическая ссылка на статью
Magnetoelectric Sensors of Magnetic Field Based on Laminated Structures with Composite Magnetostrictive Layers / A. P. Nosov, I. V. Gribov, N. A. Moskvina, A. V. Druzhinin, V. I. Osotov, V. A. Bespalov, B. A. Loginov // Diagnostics, Resource and Mechanics of materials and structures. -
2016. - Iss. 5. - P. 30-38. - DOI: 10.17804/2410-9908.2016.5.030-038. -
URL: http://dream-journal.org/issues/2016-5/2016-5_93.html (accessed: 08.09.2024).
|