Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2016 Выпуск 1

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Bochkareva, A. G. Lunev , Yu. V. Li, S. A. Barannikova,  L. B. Zuev

THE DIGITAL IMAGE CORRELATION METHOD APPLIED TO STUDYING THE LOCALIZATION OF THE PLASTIC DEFORMATION OF AN ALLUMINUM ALLOY ELECTROLYTICALLY SATURATED WITH HYDROGEN

DOI: 10.17804/2410-9908.2016.1.045-054

The paper presents investigations of the effect of hydrogen embrittlement on the plastic flow. The studies are performed for test samples of aluminum alloy subjected to electrolytic hydrogenation in a three-electrode electrochemical cell at a controlled constant cathode potential using the Digital Image Correlation method. Diagrams of localized plasticity wave propagation through the length of the sample under deformation have been obtained. The deformation diagrams are examined for the deformed samples of the aluminum alloy and also main parameters of localized plasticity patterns are determined. Using the scanning electron microscopy method, the changes in the fracture surface are investigated.

Keywords: hydrogen embrittlement, duralumin, plasticity, microhardness, localized deformation

References:

  1. Semenova I.V., Florianovich G.M., Khoroshilov A.V. Korroziya i zashchita ot korrozii [Corrosion and Corrosion Prevention]. Moskow, Fizmatlit Publ., 2002, 335. (In Russian).
  2. Lunarska E., Chernyaeva O. Effect of precipitates on hydrogen transport and hydrogen embrittlement of aluminum alloys. Materials Science, 2004, vol. 40, iss. 3, pp. 399–407. DOI: 10.1007/s11003-005-0049-2.
  3. Kannan M., Raja V.S. Hydrogen embrittlement susceptibility of over aged 7010 Al-alloy. Journal of Materials Science, 2006, vol. 41, pp. 5495–5499. DOI: 10.1007/s10853-006-0287-1.
  4. Kim S.J., Han M.S., Jang S.K. Electrochemical characteristics of Al-Mg alloy in seawater for leisure ship: Stress corrosion cracking and hydrogen embrittlement. Korean Journal of Chemical Engineering, 2009, vol. 26, iss. 1, pp. 250–257. DOI: 10.1007/s11814-009-0042-9.
  5. Kumar S., Namboodhiri T.K.G. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020. Bulletin of Materials Science, 2011, vol. 34, no. 2, pp. 311–321. DOI: 10.1007/s12034-011-0066-8.
  6. Nykyforchyn H.M., Ostash O.P., Tsyrul’nyk O.T., Andreiko I.M., Holovatyuk Yu.V. Electrochemical evaluation of the in-service degradation of an aircraft aluminum alloy. Materials Science, 2008, vol. 44, iss. 2, pp. 254–259. DOI: 10.1007/s11003-008-9067-1.
  7. Plekhov O.A., Naimark O., Saintier N. Experimental study of energy accumulation and dissipation in iron in an elastic-plastic transition. Technical Physics, 2007, vol. 52, no. 9, pp. 1236–1238. DOI: 10.1134/S106378420709023X.
  8. Tretyakova T.V., Vildeman V.E. Studying Cracks Development under Complex Loading Conditions by Digital Image Correlation. Zavodskaya Laboratoriya. Diagnostika Materialov, 2012, vol. 78, no. 6, pp. 54–58. (In Russian).
  9. Shibkov A.A., Zolotov A.E., Zheltov M.A. Mechanisms of the nucleation of macrolocalized deformation bands. Izvestiya RAN. Seriya Fizicheskaya, 2012, vol. 76, no.1, pp. 85–95. (In Russian).
  10. Danilov V.I., Bochkaryova A.V., Zuev L.B. Macrolocalization of deformation in material having unstable plastic flow behavior. The Physics of Metals and Metallography, 2009, vol. 107, iss. 6, pp. 616–623. DOI: 10.1134/S0031918X0906012X.
  11. Zuev L.B., Gorbatenko V.V., Pavlichev K.V. Elaboration of speckle photography techniques for plastic flow analyses. Measurement Science and Technology, 2010, vol. 21, no. 5, pp. 1–5. DOI: 10.1088/0957-0233/21/5/054014.
  12. Takai K., Shodа H., Suzuki H., Nagumo M. Lattice defects dominating hydrogen-related failure of metals. Acta Materialia, 2008, vol. 56, iss. 18, pp. 5158–5167. DOI: 10.1016/j.actamat.2008.06.031.
  13. Yagodzinskyy Y., Todoshchenko O., Papula S., Hänninen H. Hydrogen Solubility and Diffusion in Austenitic Stainless Steels Studied with Thermal Desorption pectroscopy. Steel Research International, 2011, vol. 82, iss. 1, pp. 20–25. DOI: 10.1002/srin.201000227.
  14. Barannikova S.A., Nadezhkin M.V., Mel’nichuk V.A., Zuev L.B. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen. Technical Physics Letters, 2011, vol. 37, no. 9, pp. 793–796. DOI: 10.1134/S1063785011090057.
  15. Barannikova S.A., Nadezhkin M.V., Lunev A.G., Gorbatenko V.V., Shlyakhova G.V., Zuev L.B. Effect of hydrogen on the localization of plastic deformation under tensile of low-carbon steel. Metallofizica i Noveyshie Tekhnologii, 2014, vol. 36, iss. 2, pp. 229–245. (In Russian).
  16. Barannikova S.A., Nadezhkin M.V., Lunev A.G., Gorbatenko V.V., Zuev L.B. Regularities in localization of plastic flow upon electrolytic hydrogenation of an iron bcc-alloy. Technical Physics Letters, 2014, vol. 40, iss. 3, pp. 211–214. DOI: 10.1134/S1063785014030043.
  17. Birnbaum H.K., Sofronis P. Hydrogen-enhanced localized plasticity – a mechanism for hydrogen-related fracture. Material Science and Engineering: A, 1994, vol. 176, iss. 1–2, pp. 191–202. DOI: 10.1016/0921-5093(94)90975-X.
  18. McDonald R.J., Efstathiou C., Curath P. The wave-like plastic deformation of single crystals copper. Journal of Engineering Materials and Technology, 2009, vol. 131, iss. 3, pp. 692–703. DOI: 10.1115/1.3120410.
  19. Asharia A., Beaudoin A., Miller R. New perspectives in plasticity theory: dislocation nucleation, waves and partial continuity of plastic strain ratе. Mathematics and Mechanics of Solids, 2008, vol. 13, no. 3–4, pp. 292–315. DOI: 10.1177/1081286507086903.
  20. Fressengeas C., Beaudoin A., Entemeyer D. Lebedkina T., Lebyodkin M., Taupin V. Dislocation transport and intermittency in the plasticity of crystalline solids. Physical Review B, 2009, vol. 79, iss.1, pp. 014108-1–014108-9. DOI: 10.1103/PhysRevB.79.014108.

А. В. Бочкарёва, С. А. Баранникова , А. Г. Лунев, Ю. В. Ли,  Л. Б. Зуев

ИССЛЕДОВАНИЕ ЛОКАЛИЗАЦИИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ЭЛЕКТРОЛИТИЧЕСКИ НАСЫЩЕННОГО ВОДОРОДОМ АЛЮМИНИЕВОГО СПЛАВА МЕТОДОМ ДЕКОРРЕЛЯЦИИ ЦИФРОВЫХ СПЕКЛ-ИЗОБРАЖЕНИЙ

В работе исследовано влияние насыщения водородом алюминиевого сплава марки Д1 электролитическим методом на локализацию пластического течения. Методом декорреляции цифровых спекл-изображений получены эволюционные картины распространения фронтов локализации по длине образца во время механических испытаний. Проведен анализ стадийности кривых пластического течения и определены основные количественные параметры распространения локализованных зон. Приведены результаты фрактографических исследований поверхностей разрушения дюралюмина в исходном состоянии и после взаимодействия с агрессивной водородосодержащей средой.

Ключевые слова: водородное охрупчивание, дуралюмин, пластичность, микротвердость, локализация деформации

Библиография:

  1. Семенова И. В., Флорианович Г. М., Хорошилов А. В. Коррозия и защита от коррозии. M. : Физматлит, 2002. – 335 с.
  2. Lunarska E., Chernyaeva O. Effect of precipitates on hydrogen transport and hydrogen embrittlement of aluminum alloys // Materials Science. – 2004. – Vol. 40, № 3. – P. 399–407. – DOI: 10.1007/s11003-005-0049-2.
  3. Kannan M., Raja V. S Hydrogen embrittlement susceptibility of over aged 7010 Al-alloy // Journal of Materials Science. – 2006. – Vol. 41. – P. 5495–5499. – DOI: 10.1007/s10853-006-0287-1.
  4. Kim S. J., Han M. S., Jang S. K. Electrochemical characteristics of Al-Mg alloy in seawater for leisure ship: Stress corrosion cracking and hydrogen embrittlement // Korean Journal of Chemical Engineering. – 2009. – Vol. 26, № 1. – P. 250–257. – DOI: 10.1007/s11814-009-0042-9.
  5. Kumar S., Namboodhiri T. K. G. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020 // Bulletin of Materials Science. – 2011. – Vol. 34, no. 2. – P. 311–321. – DOI: 10.1007/s12034-011-0066-8.
  6. Electrochemical evaluation of the in-service degradation of an aircraft aluminum alloy / H. M. Nykyforchyn, O. P. Ostash, O. T. Tsyrul’nyk, I. M. Andreiko, Yu. V. Holovatyuk // Materials Science. – 2008. – Vol. 44, no. 2. – P. 254–259. – DOI: 10.1007/s11003-008-9067-1.
  7. Plekhov O.A., Naimark O., Saintier N. Experimental study of energy accumulation and dissipation in iron in an elastic-plastic transition // Technical Physics. – 2007. – Vol. 52, no. 9. – P. 1236–1238. – DOI: 10.1134/S106378420709023X.
  8. Третьякова Т. В., Вильдеман В. Э. Исследование развития трещин при сложных режимах нагружения методом корреляции цифровых изображений // Заводская лаборатория. Диагностика материалов. – 2012. – Т. 78, № 6. – С. 54–58.
  9. Шибков А. А., Золотов А. Е., Желтов М. А. Механизмы зарождения полос макролокализованной деформации // Известия РАН. Серия физическая. – 2012. – Т. 76, № 1. – С. 85–95.
  10. Danilov V. I., Bochkaryova A. V., Zuev L. B.. Macrolocalization of deformation in material having unstable plastic flow behavior // The Physics of Metals and Metallography – 2009. – Vol. 107, iss. 6. – P. 616–623. – DOI: 10.1134/S0031918X0906012X.
  11. Zuev L. B., Gorbatenko V. V., Pavlichev K. V. Elaboration of speckle photography techniques for plastic flow analyses // Measurement Science and Technology. – 2010. – Vol. 21, no. 5. – P. 1–5. – DOI: 10.1088/0957-0233/21/5/054014.
  12. Lattice defects dominating hydrogen-related failure of metals / K. Takai, H. Shodа, H. Suzuki, M. Nagumo // Acta Materialia. – 2008. – Vol. 56, iss. 18. – P. 5158–5167. – DOI: 10.1016/j.actamat.2008.06.031.
  13. Hydrogen Solubility and Diffusion in Austenitic Stainless Steels Studied with Thermal Desorption Spectroscopy / Y. Yagodzinskyy, O. Todoshchenko, S. Papula, H. Hänninen // Steel Research International. – 2011. – Vol. 82, iss. 1. – P. 20–25. – DOI: 10.1002/srin.201000227.
  14. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen / S. A. Barannikova, M. V. Nadezhkin, V. A. Mel’nichuk, L. B. Zuev // Technical Physics Letters. – 2011. – Vol. 37, no. 9. – P. 793–796. – DOI: 10.1134/S1063785011090057.
  15. Effect of hydrogen on the localization of plastic deformation under tensile of low-carbon steel / S. A. Barannikova, M. V. Nadezhkin, A. G. Lunev, V. V. Gorbatenko, G. V. Shlyakhova, L. B. Zuev // Metallofizica i Noveyshie Tekhnologii. – 2014. – Vol. 36, iss. 2. – P. 229–245.
  16. Regularities in localization of plastic flow upon electrolytic hydrogenation of an iron bcc alloy / S. A. Barannikova, M. V. Nadezhkin, A. G. Lunev, V. V. Gorbatenko, L. B. Zuev // Tech[1]nical Physics Letters. – 2014. – Vol. 40, iss. 3. – P. 211–214. – DOI: 10.1134/S1063785014030043.
  17. Birnbaum H. K., Sofronis P. Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture // Material Science and Engineering: A. – 1994. – Vol. 176, iss. 1–2. – P. 191–202. – DOI: 10.1016/0921-5093(94)90975-X.
  18. McDonald R. J., Efstathiou C., Curath P. The wave-like plastic deformation of single crystals copper // Journal of Engineering Materials and Technology. – 2009. – Vol. 131, no. 4. – P. 692–703. – DOI: 10.1115/1.3120410.
  19. Asharia A., Beaudoin A., Miller R. New perspectives in plasticity theory: dislocation nucleation, waves and partial continuity of plastic strain ratе // Mathematics and Mechanics of Solids. 2008. – Vol. 13, no. 3–4. – P. 292–315. – DOI: 10.1177/1081286507086903.
  20. Fressengeas C., Beaudoin A., Entemeyer D. Dislocation transport and intermittency in the plasticity of crystalline solids // Physical Review B. – 2009. – Vol. 79. – P. 014108-1–014108-9. – DOI: 0.1103/B.79.014108.
     
PDF      

Библиографическая ссылка на статью

The Digital Image Correlation Method Applied to Studying the Localization of the Plastic Deformation of An Alluminum Alloy Electrolytically Saturated with Hydrogen / A. V. Bochkareva, A. G. Lunev, Yu. V. Li, S. A. Barannikova, L. B. Zuev // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 1. - P. 45-54. -
DOI: 10.17804/2410-9908.2016.1.045-054. -
URL: http://dream-journal.org/issues/2016-1/2016-1_74.html
(accessed: 29.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru