Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2015 Выпуск 6

Все выпуски
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. P. Vladimirov

DYNAMIC SPECKLE INTERFEROMETRY OF MICROSCOPIC AND MACROSCOPIC PROCESSES IN DEFORMABLE MEDIA

DOI: 10.17804/2410-9908.2015.6.027-057

The paper briefly considers the theory of the dynamic variant of optical speckle interferometry and its application to study in real time macroscopic and microscopic processes in deformable media. In the theoretical part, it is shown that it is convenient to study the macroscopic translational displacement, rotation and deformation of bodies by the movement of the whole picture of speckles and the shift of interference fringes of the two speckle fields, while the microscopic phenomena are conveniently studied by the change of the structure of speckle images. The paper presents some applications of original techniques developed by the author to determine rotations and strains of bodies under elastic and plastic deformations, to detect ultrasonic waves and to study the characteristics of crack initiation in high-cycle fatigue. Practical application of the developed techniques for testing macro- and microprocesses in living cells is shown.

Keywords: speckles, speckle dynamics, speckle interferometry, displacement, deformation, rotation, damage, high-cycle fatigue, crack, residual life, living cells, metabolism

Bibliography:

  1. Anisimov I.V., Kozel S.M., Lokshin G.R. Space-time statistical properties of coherent radiation scattered by a moving diffuse reflector. Optics and Spectroscopy, 1969, vol. 27, iss. 3, pp. 483–491.
  2. Yoshimura T. Statistical properties of dynamic speckles. Journal of the Optical Society of America A, 1986, vol. 3, no. 2, pp. 1032–1054.
  3. Veselov L.M., Popov I.A. Information properties of a time-varying speckle pattern. Optics and Spectroscopy, 1993, vol. 74, iss. 6, pp.685–686.
  4. Ruth B., Haina D., Waidelich W. Vibration analysis by speckle counting. Optica Acta: International Journal of Optics, 1983, vol. 30, iss. 6, pp. 841–848. DOI: 10.1080/713821265.
  5. Aleksandrov E.B., Bonch-Bruevich A.M. Investigation of Surface Strains by the Hologram Technique. Soviet Physics-Technical Papers, 1967, vol. 12, pp. 258–265.
  6. Leendertz J.A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E: Scientific Instruments, vol. 3, no. 3, pp. 214–218. DOI: 10.1088/0022-3735/3/3/312.
  7. Vladimirov A.P., Mikushin V.I. Interferometric determination of vector components of relative displacements: theory and experiment. In: Valery V. Tuchin, Vladimir P. Ryabukho, Dmitry A. Zimnyakov, eds. Saratov Fall Meeting '98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, Proceedings of SPIE. Saratov, Russia, 1999, vol. 3726, pp. 38–43. DOI: 10.1117/12.341416.
  8. Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation. Optica Acta: International Journal of Optics, 1981, vol. 27, iss. 10, pp. 1359–1376. DOI: 10.1080/713820454.
  9. Vladimirov A.P. Dinamicheskaya spekl-interferometriya deformiruemykh obyektov [Dynamic Speckle Interferometry of Objects under Deformation]. A Doctoral Thesis, Ekaterinburg, 2002, 393 p. (In Russian).
  10. Vladimirov A.P. Dinamicheskaya spekl-interferometriya deformiruyemykh tel [Dynamic Speckle Interferometry of Bodies under Deformation]. Ekaterinburg, UrO RAN Publ., 2004, 241 p. (In Russian).
  11. Vladimirov A.P., Udartsev E.V. The second-order speckle mechano-optical effect: theory and experiment. In: Dmitry A. Zimnyakov, Vladimir L. Derbov, Leonid A. Melnikov, Lev M. Babkov, eds. Saratov Fall Meeting 2002: Laser Physics and Photonics, Spectroscopy, and Molecular Modeling III; Coherent Optics of Ordered and Random Media III, Proceedings of SPIE. Saratov, Russian Federation, 2003, vol. 5067, pp. 99–106. DOI: 10.1117/12.518491.
  12. Vladimirov A.P., Mikushin V.I., Lisin A.L. Optical method of determining the components of the relative displacement vector. Technical Physics Letters, 1999, vol. 25, iss. 24, pp. 1008–1010.
  13. Vladimirov A.P., Popov D.O. Rigid Rotations of a plate and the related speckle displacements in the image plane. Technical Physics Letters, 2003, vol. 29, iss. 10, pp. 855–857.
  14. Popov D.O., Vladimirov A.P. Methods for the determination of strains by speckle displacements. In: Proceedings of the 4th Scientific-Technical Conference “Resurs i diagnostika materialov i konstruktsiy”, Ekaterinburg, 2009, pp. 51. (In Russian).
  15. Wolf E. Intensity fluctuations in stationary optical fields. Philosophical Magazine, 1957, vol. 2, iss. 5, pp. 351–354. DOI: 10.1080/14786435708243824.
  16. Vladimirov A.P., Druzhinin A.V., Malygin A.S., Mikitas К.N. Theory and calibration of speckle dynamics of phase object. In: Valery V. Tuchin; Elina A. Genina; Igor V. Meglinski, eds. Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII, Proceedings of SPIE. Saratov, Russian Federation, 2012, vol. 8337, pp. 83370C: 1–15. DOI: 10.1117/12.924800.
  17. Vladimirov A.P. Dynamic speckle interferometry of the microscopic processes. In: Ángel F. Doval, Cristina Trillo, J. Carlos Lopez-Vazquez, eds. Speckle 2012: V International Conference on Speckle Metrology, Proceedings of SPIE. Vigo, Spain, 2012, vol. 8413, pp. 8413 841305: 1–6. DOI: 10.1117/12.2184567.
  18. Pugachev V.S. Teoriya sluchainykh funktsiy [Theory of Random Functions]. М, Fizmatgiz Publ., 1962, 884 p. (In Russian).
  19. Vladimirov A.P. Time-average dynamic speckle interferometry. In: Enrico Primo Tomasini, ed. 11th International Conference on Vibration Measurements by Laser and Noncontact Techniques–Aivela 2014: Advances and Applications, Proceedings of AIP Conference Ancona, Italy, 2014, vol. 1600, pp. 237–242. DOI: 10.1063/1.4879588.
  20. Vladimirov A.P. Dynamic speckle interferometry of microscopic processes in thin biological objects. Radiophysics and Quantum Electronics, 2015, vol. 57, iss. 8, pp. 564–576. DOI: 10.1007/s11141-015-9540-2.
  21. Yamaguchi I., Takemori T., Kobayachi K. Stabilized and accelerated speckle strain gauge. In: Ryszard J. Pryputniewicz, ed. Laser Interferometry: Quantitative Analysis of Interferograms: Third in a Series, Proceedings of SPIE. San Diego, 1989, vol. 1162, pp. 187–200. DOI: 10.1117/12.962746.
  22. Vladimirov A.P., Eremin P.S. Relative displacement determination of surfaces of two objects by means of speckle-field dynamic interference in the image plane. In: Dmitry A. Zimnyakov; Vladimir L. Derbov; Leonid A. Melnikov; Lev M. Babkov, eds. Laser Physics and Photonics, Spectroscopy, and Molecular Modeling III; Coherent Optics of Ordered and Random Media III, Proceedings of SPIE. Saratov, Russian Federation, 2003, vol. 5067, pp. 91–98. DOI: 10.1117/12.518490.
  23. Vladimirov A.P., Kapustin D.S. Comparative analysis of dynamic and holographic interferometry methods with reference to deformations of a membrane. Russian Journal of Nondestructive Testing, 2004, vol. 40, iss. 1, pp. 61–65.
  24. Ed. Aleshin A.P. Metody akusticheskogo kontrolya metallov [Methods for Acoustic Testing of Metals]. М., Mashinostroenie Publ., 1989, 456 p. (In Russian).
  25. Bazylev P.V., Bondarenko A.N., Lugovoy V.A. A laser unit designed for measuring Rayleigh surface wave velocity. Defektoskopiya, 1990, no. 10, pp. 91–93. (In Russian).
  26. Trillo C., Doval A.F., Cernadas D., Lopez O., Lopez J.C., Dorrıo B.V., Fernandez J.L., Perez-Amor M. Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method. Measurement Science and Technology, 2003, vol. 14, no. 12, pp. 2127–2134. DOI: 10.1088/0957-0233/14/12/012.
  27. Vladimirov A.P., Gorkunov E.S., Eremin P.S., Zadvorkin S.M. Microdistortions in the crystal lattice of steel IIIX15 as estimated via the optoacoustic method and velocimetry. Russian Journal of Nondestructive Testing, 2006, vol. 42, iss. 9, pp. 582–585. DOI: 10.1134/S1061830906090038.
  28. Vladimirov A.P., Gorkunov E.S., Eremin P.S., Zadvorkin S.M., Shadrin M.V., Solov’ev K.E. A speckle-interferometric setup for contactless measurements of the velocity of Rayleigh ultrasonic waves. Instruments and Experimental Techniques, 2010, vol. 53, iss. 1, pp 118–121. DOI: 10.1134/S0020441210010197.
  29. Vladimirov A.P., Gorkunov E.S., Goruleva L.S., Zadvorkin S.M., Shadrin M.V. A speckle-interferometric setup for determining the velocity of ultrasonic rayleigh waves on millimeter-size segments. Russian Journal of Nondestructive Testing, 2011, vol. 47, iss. 3, pp. 153–157. DOI: 10.1134/S1061830911030107.
  30. Gilanyi A., Morishita K., Sukegawa T., Uesaka M., Miya K. Magnetic nondestructive evaluation of fatigue damage of ferromagnetic steels for nuclear fusion energy systems. Fusion Engineering and Design, 1998, vol. 42, iss. 1–4, pp. 485–491.
  31. Tupikin D.A. Thermoelectric testing of fatigue phenomena. Kontrol. Diagnostika, 2003, no. 11, pp. 53–61. (In Russian).
  32. Ignatovich S.R., Shmarov V.N., Yutskevich S.S. Peculiarities of the formation of the deformation relief on the surface of the D16AT alloy under fatigue. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2009, no. 10 (67), pp. 132–136.
  33. Ermishkin V.A., Murat D.P., Podbelsky V.V. Application of the photometric analysis of structural images to the evaluation of resistance to fatigue fracture. Avtomatizatsiya i sovremennye tekhnologii, 2008, no. 2, pp 11–21.
  34. Plekhov O.A., Panteleev I.A., Leontiev V.A. Особенности выделения тепла и генерации сигналов акустической эмиссии при циклическом деформировании армко-железа. Fizicheskaya mezomekhanika, 2009, vol. 12, no. 5, pp. 37–43.
  35. Marom E. Holographic correlation. In: Golograficheskie nerazrushayushchie issledovaniya [Holographic Nondestructive Investigtions]. М., Mashinostroenie Publ., 1979, pp. 164–194.
  36. Marom E., Muller R.K. Optical correlation for impending fatigue failure detection. International Journal of Nondestructive Testing, 1971, vol. 3, iss. 2, pp. 171–187.
  37. Kozubenlo V.P., Potichenko V.A., Borodin Yu.S. Examination of fatigue of metals by the speckle-correlation. Strength of Materials, 1989, vol. 21, iss. 7, pp. 953–958. DOI: 10.1007/BF01529623.
  38. Kamantsev I.S., Vladimirov A.P., Borodin E.M. Investigation of crack formation processes under multicycle fatigue in tube steel 09G2S using speckle-interferometry method. Vestnik TGU, 2013, vol. 18, iss. 4, pp. 1881–1882. (In Russian).
  39. Vladimirov A.P., Kamantsev I.S., Ishchenko A.V., Veselova V.E., Gorkunov E.S., Gladkovsky S.V., Zadvorkin S.M. Investigation of fatigue crack formation process on changing of surface topography of specimen and its speckle images. Deformatsiya i razrushenie materialov, 2015, no. 1, pp. 21–26. (In Russian).
  40. Vladimirov A.P., Kamantsev I.S., Veselova V.E., Gladkovski S.V. Using speckle images correlation for real-time inspection of fatigue crack initiation and propagation. In: Peter Lehmann, Wolfgang Osten, Amanda Albertazzi G. Jr., eds. Optical Measurements Systems for Industrial Inspection IX, Proceedings of SPIE. Munich, Germany, 2015, vol. 9525, pp. 952525: 1–6. DOI: 10.1117/12.2184703.
  41. Eds. Rabal H.J, Braga R.A. Dynamic Laser Speckle and Applications, CRC Press, 2008.
  42. Briers J.D. Laser speckle contrast imaging for measuring blood flow. Optica Applicata, 2007, vol. 37, iss. 1–2, pp 139–152.
  43. Malygin A.S., Bebenina N.V., Vladimirov A.P., Mikitas K.N., Baharev A.A. A speckleinterferometric device for studying the cell biological activity. Instruments and Experimental Techniques, 2012, vol. 55, iss. 3, pp. 415–418.
  44. Vladimirov A.P., Malygin A.S., Mikhailova Yu.A., Bakharev A.A., Poryvaeva A.P. Retrofit Device for Real-Time Evaluation of Metabolic Activity in Herpes Virus Infected Cell Cultures. Biomedical Engineering, 2014, vol. 48, iss. 14, pp. 178–181. DOI: 10.1007/s10527-014-9447-9.
  45. Vladimirov A.P., Baharev A.A., Malygin A.S., Mikhailova J.A., Novoselova I.A., Yakin D.I. Application of speckle dynamics for studies of cell metabolism. In: Pietro Ferraro, Simonetta Grilli, Monika Ritsch-Marte, David Stifter, eds. Optical Methods for Inspection, Characterization, and Imaging Biomaterials II, Proceedings of SPIE. Bellingham, WA, 2015, vol. 9529, pp. 95291F: 1–10. DOI: 10.1117/12.2184605.
  46. Baharev A.A., Vladimirov A.P., Malygin A.S., Mikhailova Y.A., Novoselova I.A., Yakin D.I., Druzhinin A.V Dynamic speckle-interferometer for intracellular processes analyses at high optical magnification. In: Pietro Ferraro, Simonetta Grilli, Monika Ritsch-Marte, David Stifter, eds. Optical Methods for Inspection, Characterization, and Imaging Biomaterials II, Proceedings of SPIE. Bellingham, WA, 2015, vol. 9529, pp. 95291G: 1–9. DOI: 10.1117/12.2184622.
  47. Tikhomirov A.M. Impedans biologicheskikh tkanei i ego primenenie v meditsine [Impedance of biological tissues and its application in medicine]. M, RGMU Publ., 2006, 12 p.

А. П. Владимиров

ДИНАМИЧЕСКАЯ СПЕКЛ– ИНТЕРФЕРОМЕТРИЯ МИКРОСКОПИЧЕСКИХ И МАКРОСКОПИЧЕСКИХ ПРОЦЕССОВ В ДЕФОРМИРУЕМЫХ СРЕДАХ

Кратко рассмотрены теория динамического варианта оптической спекл-интерферометрии и ее применение для изучения в реальном масштабе времени макроскопических и микроскопических процессов, протекающих в деформируемых средах. В теоретической части показано, что макроскопические поступательные перемещения, повороты и деформации тел удобно изучать по перемещению всей картины спеклов, а также по смещению интерференционных полос двух спекл-полей, в то время как микроскопические явления – по изменению структуры спекловых изображений. В работе приведены примеры применения разработанных автором оригинальных методик для определения поворотов, деформаций при упругих и пластических деформациях тел, регистрации ультразвуковых волн, а также для изучения особенностей зарождения трещины при многоцикловой усталости материалов. Показано практическое применение разработанных методов для контроля макро- и микропроцессов в живых клетках.

Ключевые слова: спеклы, динамика спеклов, спекл-интерферометрия, перемещения, деформации, повороты, повреждения, многоцикловая усталость, трещина, остаточный ресурс, живые клетки, метаболизм

Библиография:

  1. Anisimov I. V., Kozel S. M., Lokshin G. R. Space-time statistical properties of coherent radiation scattered by a moving diffuse reflector // Optics and Spectroscopy. – 1969. – Vol. 27, iss. 3. P. 483–491.
  2. Yoshimura T. Statistical properties of dynamic speckles // Journal of the Optical Society of America A. – 1986. – Vol. 3, no. 2. – P. 1032–1054.
  3. Veselov L. M., Popov I. A. Information properties of a time-varying speckle pattern // Optics and Spectroscopy. – 1993. – Vol. 74, iss. 6. – P. 685–686.
  4. Ruth B., Haina D., Waidelich W. Vibration analysis by speckle counting // Optica Acta: International Journal of Optics. – 1983. – Vol. 30, iss. 6. – P. 841–848. – DOI: 10.1080/713821265.
  5. Aleksandrov E. B., Bonch-Bruevich A. M. Investigation of Surface Strains by the Hologram Technique // Soviet Physics-Technical Papers. – 1967. – Vol. 12. – P. 258–265.
  6. Leendertz J. A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect // Journal of Physics E: Scientific Instruments. – Vol. 3, no. 3. – P. 214–218. – DOI: 10.1088/0022-3735/3/3/312.
  7. Vladimirov A. P., Mikushin V. I. Interferometric determination of vector components of relative displacements: theory and experiment // Saratov Fall Meeting '98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, 38: proc. SPIE. – 1999. – Vol. 3726. – P. 38–43. – DOI: 10.1117/12.341416.
  8. Yamaguchi I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation // Optica Acta: International Journal of Optics. – 1981. – Vol. 27, iss. 10. – P. 1359–1376. – DOI: 10.1080/713820454.
  9. Владимиров А. П. Динамическая спекл-интерферометрия деформируемых объектов: дис. … доктора техн. наук : 05.11.13. – Екатеринбург, 2002. – 393 с.
  10. Владимиров А. П. Динамическая спекл-интерферометрия деформируемых тел. – Екатеринбург : УрО РАН, 2004. – 241 с.
  11. Vladimirov A. P., Udartsev E. V. The second-order speckle mechano-optical effect: theory and experiment // Saratov Fall Meeting 2002: Laser Physics and Photonics, Spectroscopy, and Molecular Modeling III; Coherent Optics of Ordered and Random Media III, 99: proc. SPIE. – 2003. – Vol. 5067. – P. 99–106. – DOI: 10.1117/12.518491.
  12. Vladimirov A. P., Mikushin V. I., Lisin A. L. Optical method of determining the components of the relative displacement vector // Technical Physics Letters. – 1999. – Vol. 25, iss. 24. – P. 1008–1010.
  13. Vladimirov A. P., Popov D. O. Rigid Rotations of a plate and the related speckle displacements in the image plane // Technical Physics Letters. – 2003 – Vol. 29, iss. 10. – P. 855–857.
  14. Попов Д. О., Владимиров А. П. Методика определения деформаций по смещениям спеклов // Ресурс и диагностика материалов и конструкций: тезисы докладов IV Российской научно-технической конференции. – Екатеринбург, 2009. – С. 51.
  15. Wolf E. Intensity fluctuations in stationary optical fields // Philosophical Magazine. – 1957. Vol. 2, iss. 5. – P. 351–354. – DOI: 10.1080/14786435708243824.
  16. Vladimirov A. P., Druzhinin A. V., Malygin A. S., Mikitas К. N. Theory and calibration of speckle dynamics of phase object // Proc. SPIE. – 2012. – Vol. 8337. – P. 8337ОС: 1–15. – DOI: 10.1117/12.924800.
  17. Vladimirov A. P. Dynamic speckle interferometry of the microscopic processes // Proc. SPIE. – 2012. – Vol. 8413. – P. 841305: 1–6. – DOI: 10.1117/12.2184567.
  18. Пугачев В. С. Теория случайных функций. М : Физматгиз, 1962. – 884 с.
  19. Vladimirov A. P. Time-average dynamic speckle interferometry // AIP Conf. Proc. – 2014. – Vol. 1600. P. 237–242. – DOI: 10.1063/1.4879588.
  20. Vladimirov A. P. Dynamic speckle interferometry of microscopic processes in thin biological objects // Radiophysics and Quantum Electronics. – 2015. – Vol. 57, iss. 8. – P. 564–576. – DOI: 10.1007/s11141-015-9540-2.
  21. Yamaguchi I., Takemori T., Kobayachi K. Stabilized and accelerated speckle strain gauge // Proc. SPIE.1989. – Vol. 1162. – P. 187–200. – DOI: 10.1117/12.962746.
  22. Vladimirov A. P., Eremin P. S. Relative displacement determination of surfaces of two objects by means of speckle-field dynamic interference in the image plane // Proc. SPIE. – 2003, – Vol. 5067. – P. 91–98. – DOI: 10.1117/12.518490.
  23. Vladimirov A. P., Kapustin D. S. Comparative analysis of dynamic and holographic interferometry methods with reference to deformations of a membrane // Russian Journal of Nondestructive Testing. – 2004. – Vol. 40, iss. 1. – P. 61–65.
  24. Методы акустического контроля металлов / под ред. Н. П. Алешина. – М. : Машиностроение, 1989. – 456 с.
  25. Базылев П. В., Бондаренко А. Н., Луговой В. А. Лазерная установка для измерения скорости распространения поверхностных волн Рэлея // Дефектоскопия. – 1990. – № 10. – С. 91–93.
  26. Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method / C. Trillo,F. Doval, D. Cernadas, O. Lopez, J. C. Lopez, B. V. Dorrıo, J. L. Fernandez, M. Perez-Amor // Measurement Science and Technology. – 2003. – Vol. 14, no. 12. – P. 2127–2134. – DOI: 10.1088/0957-0233/14/12/012.
  27. Microdistortions in the crystal lattice of steel IIIX15 as estimated via the optoacoustic method and velocimetry / A. P. Vladimirov, E. S. Gorkunov, P. S. Eremin, S. M. Zadvorkin // Russian Journal of Nondestructive Testing. – 2006. – Vol. 42, iss. 9. – P. 582–585. – DOI: 10.1134/S1061830906090038.
  28. A speckle-interferometric setup for contactless measurements of the velocity of Rayleigh ultrasonic waves / A. P. Vladimirov, E. S. Gorkunov, P. S. Eremin, S. M. Zadvorkin, M. V. Shadrin, K. E. Solov’ev // Instruments and Experimental Techniques. – 2010. – Vol. 53, iss. 1. – P. 118–121. – DOI: 10.1134/S0020441210010197.
  29. A speckle-interferometric setup for determining the velocity of ultrasonic rayleigh waves on millimeter-size segments / A. P. Vladimirov, E .S. Gorkunov, L. S. Goruleva, S. M. Zadvorkin, M. V. Shadrin // Russian Journal of Nondestructive Testing. – 2011. – Vol. 47, iss. 3. – P. 153–157. – DOI: 10.1134/S1061830911030107.
  30. Magnetic nondestructive evaluation of fatigue damage of ferromagnetic steels for nuclear fusion energy systems / A. Gilanyi, K. Morishita, T. Sukegawa, M. Uesaka, K. Miya // Fusion Engineering and Design. – 1998. – Vol. 42, iss. 1–4. – P. 485–491.
  31. Тупикин Д. А. Термоэлектрический метод контроля усталостных явлений // Контроль. Диагностика. – 2003. – № 11. – С. 53–61.
  32. Игнатович С. Р., Шмаров В. Н., Юцкевич С. С. Особенности формирования деформационного рельефа на поверхности сплава Д16АТ при усталости // Авиационно-космическая техника и технология. – 2009. – Т. 67. – № 10. – С. 132–135.
  33. Ермишкин В. А., Мурат Д. П., Подбельский В. В. Применение фотометрического анализа структурных изображений для оценки сопротивления усталостному разрушению // Автоматизация и современные технологии. – 2008. – № 2. – С. 11–21.
  34. Плехов О. А., Пантелеев И. А., Леонтьев В. А. Особенности выделения тепла и генерации сигналов акустической эмиссии при циклическом деформировании армко-железа // Физическая мезомеханика. – 2009. – Т. 12, № 5. – С. 37–43.
  35. Маром Е. Голографическая корреляция // Голографические неразрушающие исследования. – М. : Машиностроение, 1979. – С. 164–194.
  36. Marom E., Muller R. K. Optical correlation for impending fatigue failure detection // International Journal of Nondestructive Testing. – 1971. – Vol. 3, iss. 2. – P. 171–187.
  37. Kozubenlo V. P., Potichenko V. A., Borodin Yu. S. Examination of fatigue of metals by the speckle-correlation // Strength of Materials. – 1989. – Vol. 21, iss. 7. – P. 953–958. – DOI: 10.1007/BF01529623.
  38. Kamantsev I. S., Vladimirov A. P., Borodin E. M. Исследование процессов зарождения трещин при многоцикловой усталости трубной стали 09Г2С с использованием метода спекл-интерферометрии // Vestnik TGU. – 2013. – Vol. 18. iss. 4. – P. 1881–1882.
  39. Изучение процесса зарождения усталостной трещины по изменению рельефа поверхности образца и ее спекловых изображений / A. P. Vladimirov, I. S. Kamantsev, A. V. Ishchenko, V. E. Veselova, E. S. Gorkunov, S. V. Gladkovsky, S. M. Zadvorkin // Deformatsiya i razrushenie materialov. – 2015. – No. 1. – P. 21–26.
  40. Using speckle images correlation for real-time inspection of fatigue crack initiation and propagation / A. P. Vladimirov, I. S. Kamantsev, V. E. Veselova, S. V. Gladkovski // Proc. SPIE. – 2015. – Vol. 9525. – P. 952525: 1–6. – DOI: 10.1117/12.2184703.
  41. Dynamic Laser Speckle and Applications / Edited by H. J. Rabal and R. A. Braga. – CRC Press, 2008.
  42. Briers J. D. Laser speckle contrast imaging for measuring blood flow // Optica Applicata. – 2007. – Vol. 37, issue 1–2. – P 139–152.
  43. A speckle-interferometric device for studying the cell biological activity / A. S. Malygin, N. V. Bebenina, A. P. Vladimirov, K. N. Mikitas, A. A. Baharev // Instruments and Experimental Techniques. – 2012. – Vol. 55, iss. 3. – P. 415–418.
  44. Retrofit Device for Real-Time Evaluation of Metabolic Activity in Herpes Virus Infected Cell Cultures / A. P. Vladimirov, A. S. Malygin, Yu. A. Mikhailova, A. A. Bakharev, A. P. Poryvaeva // Biomedical Engineering. – 2014. – Vol. 48, iss. 14. – P. 178–11. – DOI: 10.1007/s10527-014-9447-9.
  45. Application of speckle dynamics for studies of cell metabolism / A. P. Vladimirov, A. Baharev, A. S. Malygin, J. A. Mikhailova, I.A. Novoselova, D. I. Yakin // Proc. SPIE. – 2015. – Vol. 9529. – P. 95291F: 1–10.
  46. Dynamic speckle-interferometer for intracellular processes analyses at high optical magnification / A. A. Baharev, A. P. Vladimirov, A. S. Malygin, Y. A. Mikhailova, I. A. Novoselova, D. I. Yakin, A. V. Druzhinin // Proc. SPIE. – 2015. – Vol. 9529. P. 95291G: 1–9.
  47. Тихомиров А. М. Импеданс биологических тканей и его применение в медицине. – М : РГМУ, 2006. – 12 с.
                 
PDF      

Библиографическая ссылка на статью

Vladimirov A. P. Dynamic Speckle Interferometry of Microscopic and Macroscopic Processes in Deformable Media // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 6. - P. 27-57. -
DOI: 10.17804/2410-9908.2015.6.027-057. -
URL: http://dream-journal.org/issues/2015-6/2015-6_37.html
(accessed: 10.09.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru