Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova

GRAIN GROWTH IN DYNAMICALLY RECRYSTALLIZED COPPER DURING ANNEALING ABOVE AND BELOW THE TEMPERATURE OF THERMALLY ACTIVATED NUCLEATION

DOI: 10.17804/2410-9908.2016.5.015-029

The effect of dynamic recrystallization on the change of the structure of copper (99.97 %), deformed by the "shear under pressure" and ECAP methods, during subsequent heating is studied. It is shown that different conditions of deformation of copper provide varying degrees of dynamic recrystallization, dynamic recovery and strain hardening. A submicrograin structure fails to be formed after primary recrystallization is completed. Dynamic recrystallization leads to the formation of the coarsest grain (15-20 μm) and size heterogeneous structure during subsequent recrystallization at 100 °C (below the temperature of thermally activated nucleation in moderately deformed copper). Heating at temperatures ranging between 150 °C and 400 °C (above the temperature of thermally activated nucleation) leads to the formation of finer grains in the fully recrystallized material. In samples with a partially dynamically recrystallized structure the grain size changes insignificantly. The finest grain with an average size of 4-7 μm is formed after short-time annealing at 300 °C.

Keywords: severe plastic deformation, copper, temperature-compensated strain rate, dynamic recrystallization, static recrystallization, structure

References:

  1. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of Metals and Alloys]. Moscow, MISIS Publ., 2005, 432 p. (In Russian).
  2. Voronova L.M., Degtyarev M.V., Chashchukhina T.I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening. Physics of Metals and Metallography, 2007, vol. 104, no. 3, pp. 262–273. DOI: 10.1134/S0031918X07090086.
  3. Krasnoperova Yu.G., Degtyarev M.V., Voronova L.M., Chashchukhina T.I. Effect of Annealing Temperature on the Recrystallization of Nickel with Different Ultradisperse Structures. Physics of Metals and Metallography, 2016, vol. 117, no. 3, pp. 267–274. DOI: 10.1134/S0031918X16030078.
  4. Smirnova N.A., Levit V.I., Pilyugin V.P., Kuznetsov R.I., Degtyarev M.V. Peculiarities of low-temperature recrystallization of nickel and copper. Fizika Metallov i Metallovedenie, 1986, vol. 62, iss. 3, pp. 566–570.
  5. Degtyarev M.V., Chashchukhina T.I., Romanova M.Yu., Voronova L.M. Correlation between the copper structure and temperature-rate parameters of pressure-induced shear deformation. Doklady Physics, 2004, vol. 49, no. 7, pp. 415–418. DOI: 10.1134/1.1784855.
  6. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation. Асta Materialia, 2007, vol. 55, pp. 6039–6050. DOI: 10.1016/j.actamat.2007.04.017.
  7. Gindin I.A., Lazarev B.G., Starodub J.D., Lazareva M.B. Low-Temperature Recrystallization of Copper Rolled at 77 and 20 K. Dokl. Akad. Nauk SSSR, 1966, vol. 171, no. 3, pp. 552–554.
  8. Bykov V.M., Likhachev V.A., Nikonov Yu.A., Serbina L.L., Shibalova L.I. Fragmentation and dynamic recrystallization of copper at large and very large plastic deformations. Fizika Metallov i Metallovedenie, 1978, vol. 45, no. 1, pp. 163–169.
  9. Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Makarov I.M., Malashenko L.M., Kukareko V.A. Anomalous grain growth in nano- and microcrystalline metals produced by equal-channel angular pressing methods. Part I. Structural studies. Materialovedenie, 2003, no. 4, pp. 9–17.
  10. Kopylov V.I., Makarov I.M., Nesterova E.V., Rybin V.V. Crystallographic analysis of a submicrocrystalline structure obtained by ECA pressing of highly pure copper. Voprosy Materialovedeniya, 2002, no. 1 (29), pp. 273–278. (In Russian).
  11. Amirkhanov N.M., Islamgaliev R.K., Valiev R.Z. Thermal Relaxation and Grain Growth upon Isothermal Annealing of Ultrafine-Grained Copper Produced by Severe Plastic Deformation. Fizika Metallov i Metallovedenie, 1998, vol. 86, iss. 3, pp. 99–105.
  12. Orlova D.K., Chashchukhina T.I., Voronova L.M., Degtyarev M.V., Krasnoperova Yu.G. Effect of impurities on dynamic recrystallization in copper deformed in bridgman anvils. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 90–98. DOI: 10.17804/2410-9908.2015.5.090-098. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Orlova_D.K._et_al._090_098.pdf (accessed 15.09.2016).
  13. Shirinkina I.G., Brodova I.G., Astafiev V.V. Thermal stability of the ultrafine amts aluminum alloy after high strain-rate deformation. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 72–79. DOI: 10.17804/2410-9908.2015.5.072-079. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Shirinkina_I.G._et_al._072_079.pdf (accessed 13.09.2016).
  14. Gusev A.I. Nanokristallicheskie materialy: metody polucheniya i svoistva [Nanocrystalline Materials: Production Methods and Properties.]. Ekaterinburg, UrO RAN Publ., 1998, 200 p. (In Russian).
  15. Pilyugin V.P. Structural and phase transformations in iron alloys under high pressure deformation. Ph.D thesis, Ekaterinburg, 1993. (In Russian).
  16. Chashchukhina T.I., Degtyarev M.V., Voronova L.M. Effect of Pressure on the Evolution of Copper Microstructure upon Large Plastic Deformation. Physics of Metals and Metallography, 2010, vol. 109, iss. 2, pp. 201–209. DOI: 10.1134/S0031918X10020122.
  17. Segal V.M., Reznikov V.I., Kopylov V.I., Pavlik L.A., Malyshev V.F. Protsessy plasticheskogo strukturoobrazovaniya metallov [Processes of Plastic Structure Formation of Metals]. Minsk, Navuka i tekhnika Publ., 1994, 232 p. (In Russian).
  18. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Kopylov V.I. Establishment of conformity between the true strain, hardness and size of the structural elements of iron and structural steel under severe plastic deformation in different ways. Fizicheskaya Mezomekhanika, 2013, vol. 16, no. 6, pp. 71–80. (In Russian).
  19. Degtyarev M.V., Voronova L.M., Chashchukhina T.I. Low-temperature recrystallization of pure iron deformed by shear under pressure. Physics of Metals and Metallography, 2004, vol. 97, no. 1, pp. 72–81.
  20. Frolova N.Yu., Zeldovich V.I., Khomskaya I.V., Kheifets A.E., Shorokhov E.V. Influence of aging and strain on the structure and mechanical properties of chromium-zirconium bronze. Diagnostics, Resource and Mechanics of materials and structure, 2015, iss. 5, pp. 99–108. DOI: 10.17804/2410-9908.2015.5.099-108. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Frolova_N._Yu._et_al._099_108.pdf (accessed 13.09.2016).

М. В. Дегтярев, Т. И. Чащухина, Л. М. Воронова

РОСТ ЗЕРНА В ДИНАМИЧЕСКИ РЕКРИСТАЛЛИЗОВАННОЙ МЕДИ ПРИ ОТЖИГЕ ВЫШЕ И НИЖЕ ТЕМПЕРАТУРЫ ТЕРМОАКТИВИРОВАННОГО ЗАРОЖДЕНИЯ

Исследовано влияние динамической рекристаллизации на изменение при последующем нагреве структуры меди марки М0б, деформированной методами «сдвиг под давлением» и РКУП. Показано, что разные условия деформации меди обеспечивают различную степень развития динамической рекристаллизации, динамического возврата и деформационного упрочнения. По завершении первичной рекристаллизации не удается получить субмикрозернистую структуру. Динамическая рекристаллизации приводит к формированию наиболее крупнозернистой (15–20 мкм) и размерно неоднородной структуры при последующей статической рекристаллизации, осуществляемой при 100 °С (ниже температуры термоактивированного зарождения в умеренно деформированной меди). Нагрев в интервале 150–400 °С (выше температуры термоактивированного зарождения) приводит к формированию более мелкого зерна в полностью динамически рекристаллизованном материале и мало меняет размер зерна в образцах с частично динамически рекристаллизованной структурой. Наиболее мелкое зерно средним размером 4–7 мкм формируется после кратковременного отжига при 300 °С.

Ключевые слова: большая пластическая деформация, медь, температурно-скомпенсированная скорость деформации, динамическая рекристаллизация, статическая рекристаллизация, структура

Библиография:

  1. Горелик С. С., Добаткин С. В., Капуткина Л. М. Рекристаллизация металлов и сплавов. – М. : МИСИС, 2005. – 432 с.
  2. Voronova L. M., Degtyarev M. V., Chashchukhina T. I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening // Physics of Metals and Metallography. – 2007. – Vol. 104, iss. 3. – P. 262–273. – DOI: 10.1134/S0031918X07090086.
  3. Effect of Annealing Temperature on the Recrystallization of Nickel with Different Ultradisperse Structures / Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina // Physics of Metals and Metallography. – 2016. – Vol. 117, no. 3. – P. 267–274. – DOI: 10.1134/S0031918X16030078.
  4. Peculiarities of low-temperature recrystallization of nickel and copper / N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, M. V. Degtyarev // Fizika Metallov i Metallovedenie. – 1986. – Vol. 62, iss. 3. – P. 566–570.
  5. Correlation between the copper structure and temperature-rate parameters of pressure-induced shear deformation / M. V. Degtyarev, T. I. Chashchukhina, M. Yu. Romanova, L. M. Voronova // Doklady Physics. – 2004. – Vol. 49, no. 7. – P. 415–418. – DOI: 10.1134/1.1784855.
  6. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation / M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, V. P. Pilyugin // Асta Materialia. – 2007. – Vol. 55, iss. 18. – P. 6039–6050. – DOI: 10.1016/j.actamat.2007.04.017.
  7. Low-Temperature Recrystallization of Copper Rolled at 77 and 20 K / I. A. Gindin, B. G. Lazarev, J. D. Starodub, M. B. Lazareva // Dokl. Akad. Nauk SSSR. – 1966. – Vol. 171. – No. 3. – P. 552–554.
  8. Fragmentation and dynamic recrystallization of copper at large and very large plastic deformations / V. M. Bykov, V. A. Likhachev, Yu. A. Nikonov, L. L. Serbina, L. I. Shibalova // Fizika Metallov i Metallovedenie. – 1978. – Vol. 45, no. 1. – P. 163–169.
  9. Anomalous grain growth in nano- and microcrystalline metals produced by equal-channel angular pressing methods. Part I. Structural studies / V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, L. M. Malashenko, V. A. Kukareko // Materialovedenie. – No. 4. – P. 9–17.
  10. Кристаллографический анализ субмикрокристаллической структуры, полученной РКУ прессованием высокочистой меди / В. И. Копылов, И. М. Макаров, Е. В. Нестерова, В. В. Рыбин // Вопросы материаловедения. – 2002. – № 1 (29). – С. 273–278.
  11. Amirkhanov N. M., Islamgaliev R. K., Valiev R. Z. Thermal relaxation and grain growth upon isothermal annealing of ultrafine-grained copper produced by severe plastic deformation // Fizika Metallov i Metallovedenie. – 1998. – Vol. 86, iss. 3. – P. 99–105.
  12. Effect of impurities on dynamic recrystallization in copper deformed in bridgman anvils / D. K. Orlova, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, Yu. G. Krasnoperova // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 90–98. – DOI: 10.17804/2410-9908.2015.5.090-098. – URL: http://dream- journal.org/DREAM_Issue_5_2015_Orlova_D.K._et_al._090_098.pdf (accessed 13.09.2016).
  13. Shirinkina I. G., Brodova I. G., Astafiev V. V. Thermal stability of the ultrafine amts aluminum alloy after high strain-rate deformation // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 72–79. – DOI: 10.17804/2410-9908.2015.5.072-079. – URL: http://dream-journal.org/DREAM_Issue_5_2015_Shirinkina_I.G._et_al._072_079.pdf (accessed 13.09.2016).
  14. Гусев А. И. Нанокристаллические материалы: методы получения и свойства. – Екатеринбург : УрО РАН, 1998. – 200 с.
  1. Пилюгин В. П. Структурные и фазовые превращения в сплавах железа при деформации под высоким давлением : дис. ... канд. физ.-мат. наук : 01.04.07. – Екатеринбург, 1993. – 200 с.
  2. Chashchukhina T. I., Degtyarev M. V., Voronova L. M. Effect of Pressure on the Evolution of Copper Microstructure upon Large Plastic Deformation // Physics of Metals and Metallography. – 2010. – Vol. 109, iss. 2. – P. 201–209. – DOI: 10.1134/S0031918X10020122.
  3. Процессы пластического структурообразования металлов / В. М. Сегал, В. И. Резников, В. И. Копылов, Л. А. Павлик, В. Ф. Малышев. – Минск : Навука i тэхнiка, 1994. – 232 с.
  4. Установление соответствия между степенью деформации, твердостью и размерами элементов структуры железа и конструкционных сталей при большой пластической деформации различными способами. / М. В. Дегтярев, Т. И. Чащухина, Л. М. Воронова, В. И. Копылов // Физическая мезомеханика. – 2013. – Т. 16, № 6. – С. 71–80.
  5. Low-temperature recrystallization of pure iron deformed by shear under pressure / M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina // Physics of Metals and Metallography. – 2004. – Vol. 97, no. 1. – P. 72–81.
  6. Influence of aging and strain on the structure and mechanical properties of chromium-zirconium bronze / N. Yu. Frolova, V. I. Zeldovich, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 99–108. – DOI: 10.17804/2410-9908.2015.5.099-108. – URL: http://dream-journal.org/DREAM_Issue_5_2015_Frolova_N._Yu._et_al._099_108.pdf (accessed 13.09.2016).

PDF      

Библиографическая ссылка на статью

Degtyarev M. V., Chashchukhina T. I., Voronova L. M. Grain Growth in Dynamically Recrystallized Copper During Annealing above and below the Temperature of Thermally Activated Nucleation // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 5. - P. 15-29. -
DOI: 10.17804/2410-9908.2016.5.015-029. -
URL: http://dream-journal.org/issues/content/article_91.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru