I. V. Vindokurov, M. A. Tashkinov, V. A. Mubassarova, I. A. Panteleev, O. A. Plekhov, A. Yu. Iziumova, A. N. Vshivkov
STUDYING THE STRUCTURE AND MECHANICAL BEHAVIOR OF ACRYLONITRILE-BUTADIENE-STYRENE SAMPLES AFTER LASER HARDENING
DOI: 10.17804/2410-9908.2024.6.184-202 Improving the fatigue and strength properties of structural materials involves various surface processing methods. Laser shock peening (LSP), typically applied to the surfaces of metal components and structures, is one of the widely used approaches. This study explores the potential application of LSP to non-metallic composite materials produced via fused deposition modeling. The research examines the physical mechanisms and fundamental principles of LSP, along with its effects on the microstructure and mechanical properties of composite products. The structure of the composite samples before and after LSP was analyzed by X-ray computed microtomography. Tensile tests were conducted on samples treated with LSP, and different absorbing layers were compared, namely aluminum foil, PVC tape, and gold coating. The results have shown that the mechanical properties of the LSP-treated samples, regardless of the absorbing layer used, differ only slightly from each other and from the untreated samples.
Acknowledgement: The production of the samples and the determination of their mechanical properties were carried out at Perm National Research Polytechnic University with a support from the Russian Sci-ence Foundation, project No. 22-79-10350. Laser shock processing of the composite materials, as well as the algorithms for reconstructing X-ray images and analyzing the material structure, was developed under the government assignment, theme registration number 124020700047-3. Keywords: X-ray computed microtomography, mechanical properties, production parameters, laser shock peening References:
- Teimouri, R., Sohrabpoor, H., Grabowski, M., Wyszyński, D., Skoczypiec, S., and Raghavendra, R. Simulation of surface roughness evolution of additively manufactured material fabricated by laser powder bed fusion and post-processed by burnishing. Journal of Manufacturing Processes, 2024, 84, 10–27. DOI: 10.1016/j.jmapro.2022.09.045.
- Kalentics, N., Boillat, E., Peyre, P., Gorny, C., Kenel, C., Leinenbach, C., Jhabvala, J., and Logé, R.E. 3D laser shock peening – a new method for the 3D control of residual stresses in selective laser melting. Materials & Design, 2017, 130, 350–356. DOI: 10.1016/j.matdes.2017.05.083.
- Takata, T., Enoki, M., Chivavibul, P., Matsui, A., and Kobayashi, Y. Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening. Materials Transactions, 2016, 57 (10), 76–1783. DOI: 10.2320/matertrans.M2016150.
- Xiong, Q., Shimada T., Kitamura, T., and Li, Z. Atomic investigation of effects of coating and confinement layer on laser shock peening. Optics & Laser Technology, 2020, 131, 106409. DOI: 10.1016/j.optlastec.2020.106409.
- Cunha, A., Giacomelli, R.O., Kaufman, J., Brajer, J., and Pereira, T.S. An overview on laser shock peening process: from science to industrial applications. In: Int. Opt. Photonics Conf. Keep Shining, Sbfot. IOPC, 2021, vol. 2021, pp. 1–6. DOI: 10.1109/SBFotonIOPC50774.2021.9461929.
- Clauer, A.H. and Lahrman, D.F. Laser shock processing as a surface enhancement process. Key Engineering Materials, 2001, 197, 121–44. DOI: 10.4028/www.scientific.net/KEM.197.121.
- Wei, L., Yinghong, L., Weifeng, H. and Qipeng, L. Development and application of laser shock processing. Laser & Optoelectronics Progress, 2008, 45 (12), 15–19. DOI: 10.3788/LOP20084512.0015.
- Tang, L., Jia, W., and Hu, J. An enhanced rapid plasma nitriding by laser shock peening. Materials Letters, 2018, 231, 91–93. DOI: 10.1016/j.matlet.2018.08.010.
- Lu, J.Z., Wu, L.J., Sun, G.F., Luo, K.Y., Zhang, Y.K., Cai, J., Cui, C.Y., and Luo, X.M. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Materialia, 2017, 127, 252–66. DOI: 10.1016/j.actamat.2017.01.050.
- Zhang, X.C., Zhang, Y.K., Lu, J.Z., Xuan, F.Z., Wang, Z.D., and Tu, S.T. Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening. Materials Science and Engineering: A, 2010, 527 (15), 3411–3415. DOI: 10.1016/j.msea.2010.01.076.
- Goh, G.D., Yap, Y.L., Agarwala, S., and Yeong, W.Y. Recent progress in additive manufacturing of fiber reinforced polymer composite. Advanced Materials Technologies, 2019, 4 (1), 1800271. DOI: 10.1002/admt.201800271.
- Hwang, S., Reyes, E.I., Moon, K., Rumpf, R.C., and Kim, N.S. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. Journal of Electronic Materials, 2015, 44 (3), 771–777. DOI: 10.1007/s11664-014-3425-6.
- Yan, X., Gu, J., Zheng, G., Guo, J., Galaska, A.M., Yu, J., Khan, M.A., Sun, L., Young, D.P., Zhang, Q., Wei, S., and Guo, Z. Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer, 2016, 103, 315–27. DOI: 10.1016/j.polymer.2016.09.056.
- Chowdhury, P., Sehitoglu, H., and Rateick, R. Damage tolerance of carbon-carbon composites in aerospace application. Carbon, 2018, 126, 382–93. DOI: 10.1016/j.carbon.2017.10.019.
- Zwanenburg, E.A., Norman, D.G., Qian, C., Kendall, K.N., Williams, M.A., and Warnett, J.M. Effective X-ray micro computed tomography imaging of carbon fibre composites. Composites Part B: Engineering, 2023, 258, 110707. DOI: 10.1016/j.compositesb.2023.110707.
- Garcea, S.C., Sinclair, I., Spearing, S.M., and Withers, P.J. Mapping fibre failure in situ in carbon fibre reinforced polymers by fast synchrotron X-ray computed tomography. Composites Science and Technology, 2017, 149, 81–89. DOI: 10.1016/j.compscitech.2017.06.006.
- Stock, S.R. MicroComputed Tomography: Methodology and Applications, 2nd edition, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2020.
- Raz-Ben Aroush, D., Maire, E., Gauthier, C., Youssef, S., Cloetens, P., and Wagner, H.D. A study of fracture of unidirectional composites using in situ high-resolution synchrotron X-ray microtomography. Composites Science and Technology, 2006, 66 (10), 1348–1353. DOI: 10.1016/j.compscitech.2005.09.010.
- Ai, S., Song, W., and Chen, Y. Stress field and damage evolution in C/SiC woven composites: image-based finite element analysis and in situ X-ray computed tomography tests. Journal of the European Ceramic Society, 2021, 41 (4), 2323–2334. DOI: 10.1016/j.jeurceramsoc.2020.12.026.
- Majid, F., Zekeriti, N., Rhanim, R., Lahlou, M., Rhanim, H., and Mrani, B. Mechanical behavior and crack propagation of ABS 3D printed specimens. Procedia Structural Integrity, 2020, 28, 1719–1726. DOI: 10.1016/j.prostr.2020.10.147.
- Liu, F., Ferraris, E., and Ivens, J. Mechanical investigation and microstructure performance of a two-matrix continuous carbon fibre composite fabricated by 3D printing. Journal of Manufacturing Processes, 2022, 79, 383–393. DOI: 10.1016/j.jmapro.2022.04.050.
- Lobov, E., Dobrydneva, A., Vindokurov, I., and Tashkinov, M. Effect of short carbon fiber reinforcement on mechanical properties of 3D-printed acrylonitrile butadiene styrene. Polymers, 2023, 15 (9) DOI: 10.3390/polym15092011.
- Heidari-Rarani, M., Rafiee-Afarani, M., and Zahedi, A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 2019, 175, 107147. DOI: 10.1016/j.compositesb.2019.107147.
- Zhang, H. and Sun, W. Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction. Defence Technology, 2022, 27, 237–250. DOI: 10.1016/j.dt.2022.07.010.
- Vindokurov, I., Pirogova, Y., Tashkinov, M., and Silberschmidt, V.V. Effect of heat treatment on elastic properties and fracture toughness of fused filament fabricated PEEK for biomedical applications. Polymers, 2022, 14 (24), 5521. DOI: 10.3390/polym14245521.
- Cnudde, V. and Boone, M.N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Science Reviews, 2013, 123, 1–17. DOI: 10.1016/j.earscirev.2013.04.003.
- Hanna, R.D. and Ketcham, R.A. X-ray computed tomography of planetary materials: A primer and review of recent studies. Geochemistry, 2017, 77 (4), 547–72. DOI: 10.1016/j.chemer.2017.01.006.
- Maire, E. and Withers, P.J. Quantitative X-ray tomography. International Materials Review, 2014, 59 (1), 1–43.
- Mathews, J.P., Campbell, Q.P., Xu, H., and Halleck, P. A review of the application of X-ray computed tomography to the study of coal. Fuel, 2017, 209, 10–24. DOI: 10.1016/j.fuel.2017.07.079.
- Du Plessis, A. and Boshoff, W.P. A review of X-ray computed tomography of concrete and asphalt construction materials. Construction and Building Materials, 2019, 199, 637–51. DOI: 10.1016/j.conbuildmat.2018.12.049.
- Villarraga-Gómez, H., Herazo, E.L., and Smith, S.T. X-ray computed tomography: from medical imaging to dimensional metrology. Precision Engineering, 2019, 60, 544–69. DOI: 10.1016/j.precisioneng.2019.06.007.
- Feldkamp, L.A. and Jesion, G. 3D X-ray computed tomography. In: Review of Progress in Quantitative Nondestructive Evaluation, Springer Science, New York, USA, 1986, p. 555–566.
- Sasov, A., Liu, X., and Salmon, P.L. Compensation of mechanical inaccuracies in micro-CT and nano-CT. In: Proceedings in SPIE, Developments in X-Ray Tomography VI: vol. 7078, ed., S.R. Stock, 2008, 70781C. DOI: 10.1117/12.793212.
- Ali, M.A., Umer, R., Khan, K.A., and Cantwell, W.J. Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: a review. Composites Science and Technology, 2019, 184, 107828. DOI: 10.1016/j.compscitech.2019.107828.
- Naresh, K., Khan, K.A., Umer, R., and Cantwell, W.J. The use of X-ray computed tomography for design and process modeling of aerospace composites: a review. Materials & Design, 2020, 190, 108553. DOI: 10.1016/j.matdes.2020.108553.
И. В. Виндокуров, М. А. Ташкинов, В. А. Мубассарова, И. А. Пантелеев, О. А. Плехов, А. Ю. Изюмова, А. Н. Вшивков
ИССЛЕДОВАНИЕ СТРУКТУРЫ И МЕХАНИЧЕСКОГО ПОВЕДЕНИЯ ОБРАЗЦОВ АКРИЛОНИТРИЛБУТАДИЕНСТИРОЛА ПОСЛЕ ЛАЗЕРНОГО УПРОЧНЕНИЯ
Улучшение усталостных и прочностных характеристик конструкционных материалов включает в себя различные методы обработки поверхности. Одним из широко используемых подходов является лазерное ударное упрочнение (ЛУУ), обычно применяемое для обработки поверхностей металлических деталей и конструкций. В данном исследовании рассматривается возможность применения метода ЛУУ к неметаллическим композитным материалам, изготовленным с помощью моделирования методом наплавленного осаждения. В ходе исследования изучаются физические механизмы и фундаментальные принципы ЛУУ, а также его влияние на микроструктуру и механические свойства композитных изделий. Структура композитных образцов до и после ЛУУ была проанализирована с помощью рентгеновской компьютерной микротомографии. Были проведены испытания на растяжение образцов, обработанных лазерным ударом, и сравнение различных защитных покрытий: алюминиевой фольги, ПВХ-ленты и золотого покрытия. Результаты показали, что механические свойства образцов после ЛУУ независимо от исследованных материалов защитного покрытия незначительно отличались друг от друга и от необработанных образцов.
Благодарность: Изготовление и определение механических свойств образцов проводилось в Пермском национальном исследовательском политехническом университете при поддержке Россий-ского научного фонда (проект № 22-79-10350). Лазерная ударная обработка композицион-ных материалов, алгоритмы реконструкции рентгеновских изображений и анализа струк-туры материала были разработаны в рамках государственного задания (регистрационный номер темы 124020700047-3). Ключевые слова: рентгеновская компьютерная микротомография, механические свойства композитов, производственные параметры, лазерное ударное упрочнение Библиография:
- Simulation of surface roughness evolution of additively manufactured material fabricated by laser powder bed fusion and post-processed by burnishing / R. Teimouri, H. Sohrabpoor, M. Grabowski, D. Wyszyński, S. Skoczypiec, R. Raghavendra // Journal of Manufacturing Processes. – 2024. – Vol. 84. – P. 10–27. – DOI: 10.1016/j.jmapro.2022.09.045.
- 3D laser shock peening – a new method for the 3D control of residual stresses in selective laser melting / N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala, R. E. Logé // Materials & Design. – 2017. – Vol. 130. – P. 350–356. – DOI: 10.1016/j.matdes.2017.05.083.
- Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening / T. Takata, M. Enoki, P. Chivavibul, A. Matsui, Y. Kobayashi // Materials Transactions. – 2016. – Vol. 57 (10). – P. 1776–1783. – DOI: 10.2320/matertrans.M2016150.
- Atomic investigation of effects of coating and confinement layer on laser shock peening / Q. Xiong, T. Shimada, T. Kitamura, Z. Li // Optics & Laser Technology. – 2020. – Vol. 131. – P. 106409. – DOI: 10.1016/j.optlastec.2020.106409.
- An overview on laser shock peening process: from science to industrial applications / A. Cunha, R. O. Giacomelli, J. Kaufman, J. Brajer, T. S. Pereira // Int. Opt. Photonics Conf. Keep Shining, Sbfot. IOPC. – 2021. – Vol. 2021. – P. 1–6. – DOI: 10.1109/SBFotonIOPC50774.2021.9461929.
- Clauer A. H., Lahrman D. F. Laser shock processing as a surface enhancement process // Key Engineering Materials. – 2001. – Vol. 197. – P. 121–144. – DOI: 10.4028/www.scientific.net/KEM.197.121.
- Development and application of laser shock processing / L. Wei, L. Yinghong, W. He, Q. Li // Laser & Optoelectronics Progress. – 2008. – Vol. 45 (12). – P. 15–19. – DOI: 10.3788/LOP20084512.0015.
- Tang L., Jia W., Hu J. An enhanced rapid plasma nitriding by laser shock peening // Materals Letters – 2018. – Vol. 231. – P. 91–93. – DOI: 10.1016/j.matlet.2018.08.010.
- Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts / J. Z. Lu, L. J. Wu, G. F. Sun, K. Y. Luo, Y. K. Zhang, J. Cai, C. Y Cui., X. M. Luo // Acta Materialia. – 2017. – Vol. 127. – P. 252–266. – DOI: 10.1016/j.actamat.2017.01.050.
- Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening / X. C. Zhang, Y. K. Zhang, J. Z. Lu, F. Z. Xuan, Z. D. Wang, S. T. Tu // Materials Science and Engineering: A. – 2010. – Vol. 527 (15). – P. 3411–3415. – DOI: 10.1016/j.msea.2010.01.076.
- Recent progress in additive manufacturing of fiber reinforced polymer composite / G. D. Goh, Y. L. Yap, S. Agarwala, W. Y. Yeong // Advanced Materials Technologies. – 2019. – Vol. 4 (1). – P. 1800271. – DOI: 10.1002/admt.201800271.
- Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process / S. Hwang, E. I. Reyes, K. Moon, R. C. Rumpf, N. S. Kim // Journal of Electronic Materials. – 2015. – Vol. 44 (3). – P. 771–777. – DOI: 10.1007/s11664-014-3425-6.
- Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers / X. Yan, J. Gu, G. Zheng, J. Guo, A. M. Galaska, J. Yu, M. A. Khan, L. Sun, D. P. Young, Q. Zhang, S. Wei, Z. Guo // Polymer. – 2016. – Vol. 103. – P. 315–327. – DOI: 10.1016/j.polymer.2016.09.056.
- Chowdhury P., Sehitoglu H., Rateick R. Damage tolerance of carbon-carbon composites in aerospace application // Carbon. – 2018. – Vol. 126. – P. 382–393. – DOI: 10.1016/j.carbon.2017.10.019.
- Effective X-ray micro computed tomography imaging of carbon fibre composites / E. A. Zwanenburg, D. G. Norman, C. Qian, K. N. Kendall, M. A. Williams, J. M. Warnett // Composites Part B: Engineering. – 2023. – Vol. 258. – P. 110707. – DOI: 10.1016/j.compositesb.2023.110707.
- Mapping fibre failure in situ in carbon fibre reinforced polymers by fast synchrotron X-ray computed tomography / S. C. Garcea, I. Sinclair, S. M. Spearing, P. J. Withers // Composites Science and Technology. – 2017. – Vol. 149. – P. 81–89. – DOI: 10.1016/j.compscitech.2017.06.006.
- Stock S. R. MicroComputed Tomography. – 2nd edition. – Boca Raton, London, New York : CRC Press, Taylor and Francis Group, 2020.
- A study of fracture of unidirectional composites using in situ high-resolution synchrotron X-ray microtomography / D. Aroush Raz-Ben, E. Maire, C. Gauthier, S. Youssef, P. Cloetens, H. D. Wagner // Composites Science and Technology. – 2006. – Vol. 66 (10). – P. 1348–1353. – DOI: 10.1016/j.compscitech.2005.09.010.
- Ai S., Song W., Chen Y. Stress field and damage evolution in C/SiC woven composites: Image-based finite element analysis and in situ X-ray computed tomography tests // Journal of the European Ceramic Society. – 2021. – Vol. 41 (4). – P. 2323–2334. – DOI: 10.1016/j.jeurceramsoc.2020.12.026.
- Mechanical behavior and crack propagation of ABS 3D printed specimens / F. Majid, N. Zekeriti, R. Rhanim, M. Lahlou, H. Rhanim, B. Mrani // Procedia Structural Integrity. – 2020. – Vol. 28. – P. 1719–1726. – DOI: 10.1016/j.prostr.2020.10.147.
- Liu F., Ferraris E., Ivens J. Mechanical investigation and microstructure performance of a two-matrix continuous carbon fibre composite fabricated by 3D printing // Journal of Manufacturing Processes. – 2022. – Vol. 79. – P. 383–3893. – DOI: 10.1016/j.jmapro.2022.04.050.
- Effect of short carbon fiber reinforcement on mechanical properties of 3D-printed acrylonitrile butadiene styrene / E. Lobov, A. Dobrydneva, I. Vindokurov, M. Tashkinov // Polymers. – 2023. – Vol. 15 (9). – DOI: 10.3390/polym15092011.
- Heidari-Rarani M., Rafiee-Afarani M., Zahedi A. M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites // Composites Part B: Engineering. – 2019. – Vol. 175. – P. 107147. – DOI: 10.1016/j.compositesb.2019.107147.
- Zhang H., Sun W. Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction // Defence Technology. – 2022. – Vol. 27. – P. 237–250. – DOI: 10.1016/j.dt.2022.07.010.
- Effect of heat treatment on elastic properties and fracture toughness of fused filament fabricated PEEK for biomedical applications / I. Vindokurov, Y. Pirogova, M. Tashkinov, V. V. Silberschmidt // Polymers. – 2022. – Vol. 14 (24). – P. 5521. – DOI: 10.3390/polym14245521.
- Cnudde V., Boone M. N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications // Earth-Science Reviews. – 2013. – Vol. 123. – P. 1–17. – DOI: 10.1016/j.earscirev.2013.04.003.
- Hanna R. D., Ketcham R. A. X-ray computed tomography of planetary materials: a primer and review of recent studies // Geochemistry. – 2017. – Vol. 77 (4). – P. 547–572. – DOI: 10.1016/j.chemer.2017.01.006.
- Maire E., Withers P. J. Quantitative X-ray tomography // International Materials Review. – 2014. – Vol. 59 (1). – P. 1–43.
- A review of the application of X-ray computed tomography to the study of coal / J. P. Mathews, Q. P. Campbell, H. Xu, P. Halleck // Fuel. – 2017. – Vol. 209. – P. 10–24. – DOI: 10.1016/j.fuel.2017.07.079.
- Du Plessis A., Boshoff W. P. A review of X-ray computed tomography of concrete and asphalt construction materials // Construction and Building Materials. – 2019. – Vol. 199. – P. 637–651. – DOI: 10.1016/j.conbuildmat.2018.12.049.
- Villarraga-Gómez H., Herazo E. L., Smith S. T. X-ray computed tomography: from medical imaging to dimensional metrology // Precision Engineering. – 2019. – Vol. 60. – P. 544–569. – DOI: 10.1016/j.precisioneng.2019.06.007.
- Feldkamp L. A., Jesion G. 3D X-ray computed tomography // Review of Progress in Quantitative Nondestructive Evaluation. – New York, USA : Springer Science, 1986. – P. 555–566.
- Sasov A., Liu X., Salmon P. L. Compensation of mechanical inaccuracies in micro-CT and nano-CT // Proceedings of SPIE. Vol. 7078 : Developments in X-Ray Tomography VI / ed. by S. R. Stock. – 2008. – P. 70781C. – DOI: 10.1117/12.793212.
- Application of X-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: a review / M. A. Ali, R. Umer, K. A. Khan, W. J. Cantwell // Composites Science and Technology. – 2019. – Vol. 184. – P. 107828. – DOI: 10.1016/j.compscitech.2019.107828.
- The use of X-ray computed tomography for design and process modeling of aerospace composites: a review / K. Naresh, K. A. Khan, R. Umer, W. J. Cantwell // Materials & Design. – 2020. – Vol. 190. – P. 108553. – DOI: 10.1016/j.matdes.2020.108553.
Библиографическая ссылка на статью
Studying the Structure and Mechanical Behavior of Acrylonitrile-Butadiene-Styrene Samples after Laser Hardening / I. V. Vindokurov, M. A. Tashkinov, V. A. Mubassarova, I. A. Panteleev, O. A. Plekhov, A. Yu. Iziumova, A. N. Vshivkov // Diagnostics, Resource and Mechanics of materials and structures. -
2024. - Iss. 6. - P. 184-202. - DOI: 10.17804/2410-9908.2024.6.184-202. -
URL: http://dream-journal.org/issues/content/article_497.html (accessed: 21.01.2025).
|