Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. P. Kuznetsov, I. A. Vorontsov, V. A. Khotinov, I. S. Kamantsev

ENHANCING THE MECHANICAL PROPERTIES OF THE HEAT-AFFECTED ZONE OF A 09G2S STEEL WELDED JOINT DURING FRICTION STIR PROCESSING

DOI: 10.17804/2410-9908.2024.6.215-230

The paper proves the effectiveness of the friction stir processing of the heat-affected zone in a 09G2S steel welded joint by a carbide tool with a spherical tip having a radius of 10 mm, a normal force of 3000 N, a rotation speed of 2500 rpm, and feeds of 50, 75, and 100 mm/min. During processing, the mixed structure of the upper bainite, Widmanstӓtten ferrite, and ferrite grains changes to a globular ferrite-pearlite structure when the grains are refined in the stir zone up to 96%. The practical application of friction stir processing by a tool with a spherical tip for the hardening of the heat-affected zone of the 09G2S steel welded joint is demonstrated. As a result of the processing, the yield strength and the ultimate strength increased by 15.5% and 23.3%, respectively, the specific elongation increased by 78.6%, and the maximum recorded average increase in microhardness was 171%.

Acknowledgement: The study was performed by the Youth Laboratory of Material Surface Modification at the Yeltsin UrFU under the agreement with the Ministry of Science and Higher Education of the Russian Federation, № 075-03-2024-009/4 dated April 11, 2024 (FEUZ-2024-0020).

Keywords: surface layer, hardening, friction stir processing, low-carbon steel, welded joint, phase composition, mechanical properties

References:

1.    Mishra, R.S. and Ma, Z.Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports, 2005, 50 (1–2), 1–78. DOI: 10.1016/j.mser.2005.07.001.
2.    Janeczek, A., Tomków, J., and Fydrych, D. The influence of tool shape and process parameters on the mechanical properties of AW–3004 aluminium alloy friction stir welded joints. Materials, 2021, 14 (12), 3244. DOI: 10.3390/ma14123244.
3.    Dolatkhah, A., Golbabaei, P., Besharati-Givi, M.K., and Molaiekiya, F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Materials & Design, 2012, 37, 458–464. DOI: 10.1016/j.matdes.2011.09.035.
4.    Mironov, S., Sato, Y.S., and Kokawa, H. Grain structure evolution during friction-stir welding. Physical Mesomechanics, 2020, 23 (1), 21–31. DOI: 10.1134/S1029959920010038.
5.    Kuznetsov, V.P., Voropaev, V.V., and Skorobogatov, A.S., ed., A.A. Popov. Friktsionnaya poverkhnostnaya zakalka vrashchayushchimsya instrumentom [Frictional Surface Hardening of Steels by a Rotating Tool: Tutorial Higher Education Students]. Izdatelstvo Uralskogo Universiteta Publ., Ekaterinburg, 2022, 110 p.
6.    Sierens, A., Vanvooren, J., Deplus, K., Faes, K., and De Waele, W. Review on the possible tool materials for friction stir welding of steel plates. International Journal of Sustainable Construction and Design, 2014, 5 (1), 8. DOI: 10.21825/scad.v5i1.1119.
7.    Tarasov, S.Yu., Rubtsov, V.E., Fortuna, S.V., Eliseev, A.A., Chumaevsky, A.V., Kalashnikova, T.A., and Kolubaev, E.A. Ultrasonic-assisted agingin friction stirw eldingon Al–Cu–Li–Mg aluminum alloy. Welding in the World, 2017, 61, 679–690. DOI: 10.1007/s40194-017-0447-8.
8.    Kalashnikov, K.N., Tarasov, S.Yu., Chumaevskii, A.V., Fortuna, S.V., Eliseev, A.A., and Ivanov, A.N. Towards aging in a multipass friction stir-processed АА2024. The International Journal of Advanced Manufacturing Technology, 2019, 103, 2121–2132. DOI: 10.1007/s00170-019-03631-3.
9.    Iwaszko, J., Kudia, K., Fila, K., and Strzelecka, M. The effect of friction stir processing (FSP) on the microstructure and properties of AM60 magnesium alloy. Archives of Metallurgy and Materials, 2016, 61 (3), 1209–1214.
10.    Kumar, M., Prasanth, R., Selvakumar, B., and Ranjith, V. A review on friction stir processing of Al6061 surface composites. AIP Conf. Proc., 2019, 2128 (1), 020031. DOI: 10.1063/1.5117943.
11.    Besharati-Givi, M.K. and Asadi P. Advances in Friction-Stir Welding and Processing, Elsevier, 2014, 827 p.
12.    Yamamoto, H., Koga, S., Ito, K., and Mikami, Y. Fatigue strength improvement due to alloying steel weld toes with WC tool constituent elements through friction stir processing. The International Journal of Advanced Manufacturing Technology, 2022,119, 6203–6213. DOI: 10.1007/s00170-022-08690-7.
13.    Yamamoto, H., Imagawa, Y., Ito, K., Chen, K., and Zhang, L. Alloying a topmost steel-plate layer with WC-tool constituent elements during friction stir processing. Journal of Manufacturing Processes, 2021, 69, 311–319. DOI: 10.1016/j.jmapro.2021.07.050.
14.    Abubaker, H.M., Merah, N., Al-Badour, F.A., Albinmousa, J., and Sorour, A.A. Influence of friction stir processing on mechanical behavior of 2507 SDSS. Metals, 10 (3), 369. DOI: 10.3390/met10030369.
15.    Pan, L., Kwok, C.T., and Lo, K.H. Enhancement in hardness and corrosion resistance of AISI 420 martensitic stainless steel via friction stir processing. Surface and Coatings Technology, 2019, 357, 339–347. DOI: 10.1016/j.surfcoat.2018.10.023.
16.    Fairchild, D., Kumar, A., Ford, S., Nissley, N., Ayer, R., Jin, H., and Ozekcin, A. Research concerning the friction stir welding of linepipe steels. In: Proceedings of the 8th International Conference on Trends in Welding Research, Pine Mountain, GA, USA. June 1–6, 2008, ASM International, The Netherlands, Almere, 2009, 371–380.
17.    Santos, T.F.A., Hermenegildo, T.F.C., Afonso, C.R.M., Marinho, R.R., Paes, M.T.P., and Ramirez, A.J. Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds. Engineering Fracture Mechanics, 2010, 77 (15), 2937–2945. DOI: 10.1016/j.engfracmech.2010.07.022.
18.    Tribe, A. and Nelson, T.W. Study on the fracture toughness of friction stir welded API X80. Engineering Fracture Mechanics, 2015, 150, 58–69. DOI: 10.1016/j.engfracmech.2015.10.006.
19.    Sieurin, H. and Sandström, R. Fracture toughness of a welded duplex stainless steel. Engineering Fracture Mechanics, 2006, 73 (4), 377–390. DOI: 10.1016/j.engfracmech.2005.03.009.
20.    Voropaev, V.V. Upravlenie poverkhnostnoy zakalkoy koltsevykh uchastkov stali 20Kh13 pri obrabotke treniem s peremeshivaniem [Controlling the Surface Hardening of Circular Areas in the 20Kh13 Steel (AISI 420) During Friction Stir Processing: Cand. Thesis]. Ekaterinburg, 2021, 169 p. (In Russian).
 

В. П. Кузнецов, И. А. Воронцов, В. А. Хотинов, И. С. Каманцев

ПОВЫШЕНИЕ ПРОЧНОСТНЫХ СВОЙСТВ ОКОЛОШОВНОЙ ЗОНЫ ВАРНОГО СОЕДИНЕНИЯ СТАЛИ 09Г2С В ПРОЦЕССЕ ОБРАБОТКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ

В статье доказана эффективность обработки трением с перемешиванием околошовной зоны сварного соединения стали 09Г2С твердосплавным инструментом со сферическим наконечником радиусом 10 мм с нормальной силой 3000 Н, частотой вращения 2500 об/мин и подачами 50, 75 и 100 мм/мин. В процессе обработки смешанная структура верхнего бейнита, видманштеттова феррита и зерен феррита изменяется на глобулярную феррито-перлитную структуру при измельчении зерна в зоне перемешивания до 96 %. Продемонстрировано практическое применение обработки трением с перемешиванием инструментом со сферическим наконечником для упрочнения околошовной зоны сварного соединения стали 09Г2С. В результате обработки пределы текучести и прочности повысились на 15,5 и 23,3 % соответственно, относительное удлинение увеличилось на 78,6 %, максимальный зафиксированный средний прирост микротвердости составил 171 %.

Благодарность: Работа выполнена в молодежной лаборатории модификации поверхностей ма-териалов ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» в рамках соглашения с Министерством науки и высшего образования № 075-03-2024-009/4 от 11.04.2024 (номер темы FEUZ-2024-0020).

Ключевые слова: поверхностный слой, упрочнение, обработка трением с перемешиванием, низкоуглеродистая сталь, сварной шов, фазовый состав, механические свойства

Библиография:

1.    Mishra R. S., Ma Z. Y. Friction stir welding and processing // Materials Science and Engineering: R: Reports. – 2005. – Vol. 50 (1–2). – P. 1–78. – DOI: 10.1016/j.mser.2005.07.001.
2.    Janeczek A., Tomków J., Fydrych D. The influence of tool shape and process parameters on the mechanical properties of AW–3004 aluminium alloy friction stir welded joints // Materials. – 2021. – Vol. 14 (12). – P. 3244. – DOI: 10.3390/ma14123244.
3.    Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing / A. Dolatkhah, P. Golbabaei, M. K. Besharati-Givi, F. Molaiekiya // Materials & Design. – 2012. – Vol. 37. – P. 458–464. – DOI: 10.1016/j.matdes.2011.09.035.
4.    Mironov S., Sato Y. S., Kokawa H. Grain structure evolution during friction-stir welding // Physical Mesomechanics. – 2020. – Vol. 23 (1). – P. 21–31. – DOI: 10.1134/S1029959920010038.
5.    Кузнецов В. П., Воропаев В. В., Скоробогатов А. С. Фрикционная поверхностная закалка сталей вращающимся инструментом : учебное пособие. – Екатеринбург : Издательство Уральского университета, 2022. – 110 с.
6.    Review on the possible tool materials for friction stir welding of steel plates / A. Sierens, J. Vanvooren, K. Deplus, K. Faes, W. De Waele // International Journal of Sustainable Construction and Design. – 2014. – Vol. 5 (1). – P. 8. – DOI: 10.21825/scad.v5i1.1119.
7.    Ultrasonic-assisted agingin friction stirw eldingon Al–Cu–Li–Mg aluminum alloy / S. Y. Tarasov, V. E. Rubtsov, S. V. Fortuna, A. A. Eliseev, A. V. Chumaevsky, T. A. Kalashnikova, E. A. Kolubaev // Welding in the World. – 2017. – Vol. 61. – P. 679–690. – DOI: 10.1007/s40194-017-0447-8.
8.    Towards aging in a multipass friction stir-processed АА2024 / K. N. Kalashnikov, S. Yu. Tarasov, A. V. Chumaevskii, S. V. Fortuna, A. A. Eliseev, A. N. Ivanov // The International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 103. – P. 2121–2132. – DOI: 10.1007/s00170-019-03631-3.
9.    The effect of friction stir processing (FSP) on the microstructure and properties of AM60 magnesium alloy / J. Iwaszko, K. Kudia, K. Fila, M. Strzelecka // Archives of Metallurgy and Materials. – 2016. – Vol. 61 (3). – P. 1209–1214.
10.    A review on friction stir processing of Al6061 surface composites / M. Kumar; R. Prasanth, B. Selvakumar, V. Ranjith // AIP Conf. Proc. – 2019. – Vol. 2128, iss. 1. – P. 020031. – DOI: 10.1063/1.5117943.
11.    Asadi P., Besharati-Givi M. Advances in Friction-Stir Welding and Processing. – Elsevier, 2014. – 827 p.
12.    Fatigue strength improvement due to alloying steel weld toes with WC tool constituent elements through friction stir processing / H. Yamamoto, S. Koga, K. Ito, Y. Mikami // The International Journal of Advanced Manufacturing Technology. – 2022. – Vol. 119. – P. 6203–6213. – DOI: 10.1007/s00170-022-08690-7.
13.    Alloying a topmost steel-plate layer with WC-tool constituent elements during friction stir processing / H. Yamamoto, Y. Imagawa, K. Ito, K. Chen, L. Zhang // Journal of Manufacturing Processes. – 2021. – Vol. 69. – P. 311–319. – DOI: 10.1016/j.jmapro.2021.07.050.
14.    Influence of friction stir processing on mechanical behavior of 2507 SDSS / H. M. Abubaker, N. Merah, F. A. Al-Badour, J. Albinmousa, A. A. Sorour // Metals. – 2020. – Vol. 10 (3). – P. 369. – DOI: 10.3390/met10030369.
15.    Pan L., Kwok C. T., Lo K. H. Enhancement in hardness and corrosion resistance of AISI 420 martensitic stainless steel via friction stir processing // Surface and Coatings Technology. – 2019. – Vol. 357. – P. 339–347. – DOI: 10.1016/j.surfcoat.2018.10.023.
16.    Research concerning the friction stir welding of line-pipe steels / D. Fairchild, A. Kumar, S. Ford, N. Nissley, R. Ayer, H. Jin, A. Ozekcin // Proceedings of the 8th International Conference on Trends in Welding Research, Pine Mountain, GA, USA. June 1–6, 2008. – Almere, The Netherlands : ASM International, 2009. – P. 371–380.
17.    Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds / T. F. A. Santos, T. F. C. Hermenegildo, C. R. M. Afonso, R. R. Marinho, M. T. P. Paes, A. J. Ramirez // Engineering Fracture Mechanics. – 2010. – Vol. 77 (15). – P. 2937–2945. – DOI: 10.1016/j.engfracmech.2010.07.022.
18.    Tribe A., Nelson T. W. Study on the fracture toughness of friction stir welded API X80 // Engineering Fracture Mechanics. – 2015. – Vol. 150. – P. 58–69. – DOI: 10.1016/j.engfracmech.2015.10.006.
19.    Sieurin H., Sandström R. Fracture toughness of a welded duplex stainless steel // Engineering Fracture Mechanics. – 2006. – Vol. 73 (4). – P. 377–390. – DOI: 10.1016/j.engfracmech.2005.03.009.
20.    Воропаев В. В. Управление поверхностной закалкой кольцевых участков стали 20Х13 при обработке трением с перемешиванием : дис. … канд. техн. наук : 05.16.09. – Екатеринбург, 2021. – 169 с.
 


PDF      

Библиографическая ссылка на статью

Enhancing the Mechanical Properties of the Heat-Affected Zone of a 09g2s Steel Welded Joint During Friction Stir Processing / V. P. Kuznetsov, I. A. Vorontsov, V. A. Khotinov, I. S. Kamantsev // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 215-230. -
DOI: 10.17804/2410-9908.2024.6.215-230. -
URL: http://dream-journal.org/issues/content/article_483.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru