Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

D. K. Orlova, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, Yu. G. Krasnoperova

EFFECT OF IMPURITIES ON DYNAMIC RECRYSTALLIZATION IN COPPER DEFORMED IN BRIDGMAN ANVILS

DOI: 10.17804/2410-9908.2015.5.090-098

The structure of copper with a various content of impurities (0.01, 0.03, and 0.1 wt %) is studied after high pressure torsion at room temperature. It is shown that the content of impurities does not affect the true strain (e = 2) required for the onset of dynamic recrystallization (DR). It has been revealed that the temperature–strain-rate conditions (lnZ), which were the same for copper of various purity, are responsible for the degree of the dynamic recrystallization completeness and the respective type of the formed structure. The correspondence between the range of lnZ and the structure type formed during deformation has been established. Impurity dragging prevents grain growth upon postdynamic recrystallization and ensures the formation of a more dimensionally uniform structure at the stage of partial DR. At the stage of developed DR, the content of impurities in copper does not affect the grain size.

Keywords: severe plastic deformation, copper, temperature-compensated strain rate, dynamic recrystallization, postdynamic recrystallization, structure

References:

  1. Valiev R.Z., Aleksandrov I.V. Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei [Nanostructured Materials Produced by Severe Plastic Deformation]. Moscow, Logos Publ., 2000, 272p. (In Russian).
  2. Andrievskiy R.A., Glezer A.M. Size effects in nanocrystalline materials: II. Mechanical and physical properties. Physics of Metals and Metallography, 2000, vol. 89, iss. 1, pp. 83–102.
  3. Teplov V.A., Pilyugin V.P., Taluts G.G. Formation of dissipative structures and phase transitions in iron alloys upon shear under pressure. Izvestiya RAN. Metally, 1992, no. 2, pp. 109–115. (In Russian).
  4. Noskova N.I., Mulyukov R.R. Submikrokristallicheskie i nanokristallicheskie metally i splavy [Submicrocrystalline and Nanocrystalline Metals and Alloys]. Ekaterinburg, UB RAS Publ., 2003, 279 p. (In Russian).
  5. Popova E.N., Deryagina I.L., Valova-Zaharevskaya E.G., Stolbovsky A.V., Khlebova N.E., Pantsyrny V.I. Specific Features of Interfaces in Cu-Nb Nanocomposites. Defect and Diffusion Forum, 2014, vol. 354, pp. 183–188. DOI: 10.4028/www.scientific.net/DDF.354.183.
  6. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation. Асta Materialia, 2007, vol. 55, pp. 6039–6050. DOI: 10.1016/j.actamat.2007.04.017.
  7. Kaigorodova L.I., Rasposienko D.Yu., Pushin V.G., Pilyugin V.P., Smirnov S.V. Structure and mechanical properties of aging Al–Li–Cu–Zr–Sc–Ag alloy after severe plastic deformation by high-pressure torsion. Physics of Metals and Metallography, 2015, vol.116, iss. 4, pp. 346–355. DOI: 10.1134/S0031918X15040080.
  8. Shabashov V.A., Korshunov L.G., Sagaradze V.V., Kataeva N.V., Zamatovsky A.E., Litvinov A.V., Lyashkov K.A. Mossbauer analysis of deformation dissolution of the products of cellular decomposition in high-nitrogen chromium manganese austenite steel. Philosophical Magazine, 2014, vol. 94, pp. 668–682. DOI: 10.1080/14786435.2013.859758.
  9. Zel’dovich V.I., Frolova N.Yu., Khomskaya I.V., Kheifets A.E., Shorokhov E.V., Nasonov P.A. Structure and microhardness of chromium-zirconium bronze subjected to severe plastic deformation by dynamic channel-angular pressing and rolling. Physics of Metals and Metallography, 2014, vol. 115, iss. 5, pp. 465–470. DOI: 10.1134/S0031918X14050159.
  10. Brodova I.G., Shirinkina I.G., Petrova A.N., Pilyugin V.P., Tolmachev T.P. Structure of an AMts aluminum alloy after high-pressure torsion in liquid nitrogen. Physics of Metals and Metallography, 2013, vol. 114, iss. 8, pp. 667–671. DOI: 10.1134/S0031918X13080024.
  11. Smirnova N.A., Levit V.I., Pilyugin V.P., Kuznetsov R.I., Degtyarev M.V. Features of low temperature recrystallization of nickel and copper. Physics of Metals and Metallography, 1986, vol. 62, iss. 3, pp. 140–144.
  12. Smirnov A.S., Konovalov A.V., Muizemnek O.Yu. Modelling and Simulation of Strain Resistance of Alloys Taking into Account Barrier Effects. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 1, pp. 61–72. URL: http://dream-journal.org/issues/2015-1/2015-1_18.html (accessed: 10.09.2015). DOI: 10.17804/2410-9908.2015.1.061-072.
  13. Chashchukhina T.I., Degtyarev M.V., Romanova M.Yu., Voronova L.M. Dynamic recrystallization in copper deformed by shear under pressure. Physics of Metals and Metallography, 2004, vol. 98, pp. 639–647.
  14. Bernshtein M.L., Dobatkin S.V., Kaputkina L.M., Prokoshkin S.D. Diagrammy goryachey deformatsii, struktura i svoistva staley [Hot Strain Diagrams, the Structure and Properties of Steels]. Moscow, Metallurgiya Publ, 1989, 544 p. (In Russian).
  15. Levit V.I., Smirnov M.A. Vysokotemperaturnaya termomekhanicheskaya obrabotka austenitnykh staley i splavov [High-Temperature Thermomechanical Treatment of Austenitic Steels and Alloys]. Chelyabinsk CSTU Publ., 1995, 276 p. (In Russian).
  16. Gorelik S.S. Rekristallisatsiya metallov i splavov [Recrystallization of Metals and Alloys]. Moscow, Metallurgiya Publ., 1978, 568 p. (In Russian).
  17. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Kopylov V.I. Establishment of Conformity between the true strain, hardness and size of the structural elements of iron and structural steel under severe plastic deformation in different ways. Fizicheskaya mezomekhanika, 2013, vol. 16, no. 6, pp. 71–80. (In Russian).
  18. McQeen H. J. The production and utility of recovered dislocation substructures. Metallurgical Transactions A, 1977, vol. 8, iss. 6, pp. 807–824. DOI: 10.1007/BF02661562.
  19. Amirkhanov N.M., Islamgaliev R.K., Valiev R.Z. Thermal relaxation and grain growth upon isothermal annealing of ultrafine_grained copper produced by severe plastic deformation. Physics of Metals and Metallography, 1998, vol. 86, iss. 3, pp. 296–301.
  20. Saltykov S.A. Stereometricheskaya metallografiya [Stereometric Metallography]. Moscow, Metallurgiya Publ., 1970, 375p. (In Russian).
  21. Novikov V.Yu. Vtorichnaya rekristallizatsiya [Secondary Recrystallization]. Moscow, Metallurgiya Publ., 1990, 128p. (In Russian).
 

Д. К. Орлова, Т. И. Чащухина, Л. М. Воронова, М. В. Дегтярев, Ю. Г. Красноперова

ВЛИЯНИЕ ПРИМЕСЕЙ НА ДИНАМИЧЕСКУЮ РЕКРИСТАЛЛИЗАЦИЮ В МЕДИ, ДЕФОРМИРОВАННОЙ В НАКОВАЛЬНЯХ БРИДЖМЕНА

Проведено исследование структуры меди с различным (0.01, 0.03 и 0.1 мас.%) содержанием примесей, деформированной при комнатной температуре методом сдвига под давлением. Показано, что количество примесей не влияет на величину деформации (е = 2), необходимой для начала динамической рекристаллизации (ДР). Установлено, что полнота протекания динамической рекристаллизации, и соответственно тип формирующейся структуры определяется температурно-скоростными условиями деформации (lnZ), одинаковыми для меди разной степени чистоты. Выявлены интервалы lnZ, отвечающего за тип структуры, формирующейся при деформации. Примесное торможение препятствует росту зерна при постдинамической рекристаллизации и способствует образованию более размерно однородной структуры на стадии частичной ДР. На стадии развитой ДР содержание примесей в меди не влияет на размер зерна.

Ключевые слова: большая пластическая деформация, медь, температурно-скомпенсированная скорость деформации, динамическая рекристаллизация, постдинамическая рекристаллизация, структура

Библиография:

  1. Валиев Р. З., Александров И. В. Наноструктурные материалы, полученные интенсивной пластической деформацией. – М. : Логос, 2000. – 272 с.
  2. Andrievsky R. A., Glezer A. M. Size effects in nanocrystalline materials: II. Mechanical and physical properties // Physics of Metals and Metallography. – 2000. – Vol. 89, iss. 1. – P. 83–102.
  3. Теплов В. А., Пилюгин В. П., Талуц Г. Г. Образование диссипативной структуры и фазовые переходы в сплавах железа при сдвиге под давлением // Известия РАН. Металлы. – 1992. – № 2. – С. 109–154.
  4. Носкова Н. И., Мулюков Р. Р. Субмикрокристаллические и нанокристаллические металлы и сплавы. – Екатеринбург: УрО РАН, 2003. – 279 с.
  5. Specific Features of Interfaces in Cu-Nb Nanocomposites / E. N. Popova, I. L. Deryagina, E. G. Valova-Zaharevskaya, A. V. Stolbovsky, N. E. Khlebova, V. I. Pantsyrny // Defect and Diffusion Forum. – 2014. – Vol. 354. – P. 183–188. – DOI: 10.4028/www.scientific.net/DDF.354.183
  6. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation / M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, M. Patselov, V. P. Pilyugin // Асta Materialia. – 2007. – Vol. 55. – P. 6039–6050. – DOI: 10.1016/j.actamat.2007.04.017.
  7. Structure and mechanical properties of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation by high-pressure torsion / L. I. Kaigorodova, D. Yu. Rasposienko, V. G. Pushin, V. P. Pilyugin, S. V. Smirnov // Physics of Metals and Metallography. – 2015. – Vol. 116, iss. 4. – P. 346–355. – DOI: 10.1134/S0031918X15040080.
  8. Mossbauer analysis of deformation dissolution of the products of cellular decomposition in high-nitrogen chromium manganese austenite steel / V. A. Shabashov, L. G. Korshunov., V. V. Sagaradze, N. V. Kataeva, A. E. Zamatovsky, A. V. Litvinov, K. A. Lyashkov // Philosophi[1]cal Magazine. – 2014. – Vol. 94. – P. 668–682. – DOI: 10.1080/14786435.2013.859758.
  9. Structure and microhardness of chromium-zirconium bronze subjected to severe plastic deformation by dynamic channel-angular pressing and rolling / V. I. Zel’dovich, N. Yu. Frolova, V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, P. A. Nasonov // Physics of Metals and Metallography. – 2014. – Vol. 115, iss. 5. – P. 465–470. – DOI: 10.1134/S0031918X14050159.
  10. Structure of an AMts aluminum alloy after high-pressure torsion in liquid nitrogen / G. Brodova, I. G. Shirinkina, A. N. Petrova, V. P. Pilyugin, T. P. Tolmachev // Physics of Metals and Metallography. – 2013. – Vol. 114, iss. 8. – P. 667–671. – DOI: 10.1134/S0031918X13080024.
  11. Features of low-temperature recrystallization of nickel and copper / N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, M. V. Degtyarev // Physics of Metals and Metallography. – 1986. – Vol. 62, iss. 3. – P. 140–144.
  12. Smirnov A. S., Konovalov A. V., Muizemnek O. Yu. Modelling and Simulation of Strain Resistance of Alloys Taking into Account Barrier Effects // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 1. – P. 61–72. – URL: http://dream-journal.org/issues/2015-1/2015-1_18.html (accessed: 10.09.2015). – DOI: 10.17804/2410-9908.2015.1.061-072.
  13. Dynamic recrystallization in copper deformed by shear under pressure / T. I. Chashchukhina, M. V. Degtyarev, M. Yu. Romanova, L. M. Voronova // Physics of Metals and Metallography. –2004. – Vol. 98. – P. 639–647.
  14. Диаграммы горячей деформации, структура и свойства сталей / М. Л. Бернштейн, С. В. Добаткин, Л. М. Капуткина, С. Д. Прокошкин. – М. : Металлургия, 1989. – 544 с.
  15. Левит В. И., Смирнов М. А. Высокотемпературная термомеханическая обработка аустенитных сталей и сплавов. – Челябинск : ЧГТУ, 1995. – 276с.
  16. Горелик С. С. Рекристаллизация металлов и сплавов. – М. : Металлургия, 1978. – 568 с.
  17. Установление соответствия между степенью деформации, твердостью и размерами элементов структуры железа и конструкционных сталей при большой пластической деформации различными способами / М. В. Дегтярев, Т. И. Чащухина, Л. М. Воронова, В. И. Копылов // Физическая мезомеханика. – 2013. – Т.16, № 6. – С. 71–80.
  18. McQeen H. J. The production and utility of recovered dislocation substructures / Metallurgical Transactions A. – 1977. – Vol. 8, iss. 6. – P. 807–824. – DOI: 10.1007/BF02661562.
  19. Amirkhanov N. M., Islamgaliev R. K., Valiev R. Z. / Thermal relaxation and grain growth upon isothermal annealing of ultrafine grained copper produced by severe plastic deformation // Physics of Metals and Metallography. – 1998. – Vol. 86, iss. 3. – P. 296–301.
  20. Салтыков С. А. Стереометрическая металлография. – М. : Металлургия, 1970. – 375 с.
  21. Новиков В. Ю. Вторичная рекристаллизация. – М. : Металлургия, 1990. – 128с.
   
PDF      

Библиографическая ссылка на статью

Effect of Impurities on Dynamic Recrystallization in Copper Deformed in Bridgman Anvils / D. K. Orlova, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, Yu. G. Krasnoperova // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 5. - P. 90-98. -
DOI: 10.17804/2410-9908.2015.5.090-098. -
URL: http://dream-journal.org/issues/content/article_48.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru