Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

G. N. Gusev, V. V. Korepanov

THE FEATURES OF THE DEFORMATION BEHAVIOR OF REINFORCED MASONRY STRUCTURES UNDER TECHNOGENIC IMPACT IN SUBSIDED AREAS

DOI: 10.17804/2410-9908.2024.6.131-142

This paper considers the mechanism of the transfer of mining-caused deformations from subsided soil mass to the structural components of reinforced masonry structures (brick buildings). Different models of the behavior of a brick wall and a ground base, as well as variants of their contact interaction, are considered. The limiting strains of the ground are determined for the characteristics specified in the models. The level of strains and their growth in the bearing elements of reinforced masonry structures is shown to be essentially governed by the choice of the type of interaction of the structural elements in the system with the ground base. Curves showing the averaged strain in a brick wall of bonded section for different strength grades as a function of the deformation of the ground base are plotted on the basis of the models.

Acknowledgement: The study was performed under the state assignment, theme registration number 124020700047-3.

Keywords: subsided area, ground base deformation, brick wall, foundation wall block, numerical simulation

References:

  1. Samsonov, S. and Baryakh, A. Estimation of deformation intensity above a flooded potash mine near Berezniki (Perm Krai, Russia) with SAR interferometry. Remote Sensing, 2020, 12 (19), 3215. DOI: 10.3390/rs12193215.
  2. Gusev, G.N., Epin, V.V., and Tsvetkov, R.V. The results of long-term observations of uneven settlements of buildings located on the territory of the Verkhnekamskoye potash deposit in Berezniki. Izvestiya UGGU, 2022, 3 (67), 80–89. (In Russian). DOI: 10.21440/2307-2091-2022-3-80-89.
  3. SP 21.13330.2012. Buildings and structures on undermined territories and slumping soils. (In Russian).
  4. Territorial Building Codes. 22–301–98. (In Russian).
  5. Rukovodstvo po proektirovaniyu zdanij i sooruzhenij na podrabatyvaemykh territoriyakh [A Guide for Designing Buildings and Constructions on Moonlit Territories. Part 2]. Stroyizdat Publ., Moscow, 1986, 304 p. (In Russian).
  6. Gusev, G.N., Baryakh, A.A., Shardakov, I.N., and Tsvetkov, R.V. Ensuring safe operation of monolithic structures in undermined areas. Diagnostics, Resource and Mechanics of materials and structures, 2023, 2, 6–18. DOI: 10.17804/2410-9908.2023.2.006-018. Available at: http://dream-journal.org/issues/2023-2/2023-2_394.html
  7. Gusev, G.N., Shardakov, I.N., Baryah, A.A., and Glot, I.O. Deformation interaction of panel residential buildings with the soil in the zone of technogenic impact. Computational Continuum Mechanics, 2023, 16 (1), 36–45. (In Russian). DOI: 10.7242/1999-6691/2023.16.1.3.
  8. Menétrey, P. and Willam, K. Triaxial failure criterion for concrete and its generalization. Aci Structural Journal, 1995, 92 (3), 311–318. DOI: 10.14359/1132.
  9. Ottosen, N.S. A failure criterion for concrete. ASCE Engineering Mechanics Division, 1977, 103 (4), 527–535. DOI: 10.1061/JMCEA3.0002248.
  10. Bazant, Z.P., Yuyin, X., and Prat, P.C. Microplane model for concrete. I: stress-strain boundaries and finite strain. Journal of Engineering Mechanics, 1996, 122 (3), 245–254. DOI: 10.1061/(ASCE)0733-9399(1996)122:3(245).
  11. Bazant, Z.P., Xiang, Y., Adley, M.D., Prat, P.C., and Akers, A. Microplane model for concrete. II: data delocalization and verification. Journal of Engineering Mechanics, 1996, 122 (3), 255–262. DOI: 10.1061/(ASCE)0733-9399(1996)122:3 (255).
  12. Valanis, K.C. and Read, H.E. An endochronic plasticity theory for concrete. Mechanics of Materials, 1986, 5 (3), 277–295. DOI: 10.1016/0167-6636(86)90024-4.
  13. Bazant, Z.P., Bhat, P.D., and Shieh, C.L. Endochronic theory for inelasticity and failure analysis of concrete structures, United States, 1976.
  14. Kachanov, L.M. Introduction to Continuum Damage Mechanics, Springer, Dordrecht, 1986, 135 p. DOI: 10.1007/978-94-017-1957-5.
  15. Krajcinovic, D. and Fonseka, G.U. The continuous damage theory of brittle materials. Part 1: general theory. Journal of Applied Mechanics, 1981, 48 (4), 809–815. DOI: 10.1115/1.3157739.
  16. Valanis, K.A Theory of viscoplasticity without a yield surface. Part 1. General theory. Archives of Mechanics, 1971, 23, 517–533.
  17. Willam, K.J. and Warnke, E.P. Constitutive model for the triaxial behavior of concrete. In: International Association for Bridge and Structural Engineering Proceedings, 1975, vol. 19, pp. 1–30.
  18. Pisano, A.A. An algorithmic approach for peak load evaluation of structural elements obeying a Menetrey–Willam type yield criterion. Electronic Journal of Differential Equations, 2012, 2012 (167), 1–9. Available at: https://ejde.math.txstate.edu/Volumes/2012/167/pisano.pdf
  19. Jasinski, R. Validation of elastic-brittle, and elastic-plastic FEM model of the wall made of calcium silicate and AAC masonry units. In: IOP Conference Series: Materials Science and Engineering, 2019, 603 (3), 032001. DOI: 10.1088/1757-899X/603/3/032001.
  20. Červenka, J. and Papanikolaou, V.K. Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity, 2008, 24 (12), 2192–2220. DOI: 10.1016/j.ijplas.2008.01.004.
  21. Hokeš, F., Kala, J., Hušek, M., and Král, P. Parameter identification for a multivariable nonlinear constitutive model inside Ansys Workbench. Procedia Engineering, 2016, 161, 892–897. DOI: 10.1016/j.proeng.2016.08.743.
  22. Dmitriev, A., Novozhilov, Yu., Mikhalyuk, D., and Lalin, V. Calibration and validation of the Menetrey–Willam constitutive model for concrete. Construction of Unique Buildings and Structures, 2020, 88, 8804. DOI: 10.18720/CUBS.88.4.
  23. SP 15.13330.2020. (In Russian).

Г. Н. Гусев, В. В. Корепанов

ОСОБЕННОСТИ ДЕФОРМАЦИОННОГО ПОВЕДЕНИЯ АРМОКАМЕННЫХ СООРУЖЕНИЙ В УСЛОВИЯХ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ НА ПОДРАБАТЫВАЕМЫХ ТЕРРИТОРИЯХ

В настоящей работе рассмотрен механизм передачи деформаций от подрабатываемого грунтового массива, вызванных влиянием добычи полезных ископаемых, на конструктивные элементы армокаменных сооружений – кирпичных зданий. Рассматриваются различные модели поведения кирпичной стены и грунтового основания, а также варианты их контактного взаимодействия. Определены предельные деформации грунта для заданных характеристик в моделях. Показано, что уровень деформаций и их рост в несущих элементах армокаменных сооружений существенным образом определяется выбором варианта взаимодействия конструктивных элементов в системе с грунтовым основанием. На основе рассмотренных моделей построены зависимости осредненной деформации в кирпичной стене перевязанного сечения для разных марок прочности от деформации грунтового основания.

Ключевые слова: подработанная территория, деформация грунтового основания, кирпичная стена, фундаментный стеновой блок, численное моделирование

Библиография:

  1. Samsonov S., Baryakh A. Estimation of deformation intensity above a flooded potash mine near Berezniki (Perm Krai, Russia) with SAR interferometry // Remote Sensing. – 2020. – Vol. 12 (19). – P. 3215. – DOI: 10.3390/rs12193215.
  2. Гусев Г. Н., Епин В. В., Цветков Р. В. Результаты многолетних наблюдений неравномерных осадок зданий, находящихся на территории Верхнекамского калийного месторождения в г. Березники // Известия УГГУ. – 2022. – № 3 (67). – С. 80–89. – DOI: 10.21440/2307-2091-2022-3-80-89.
  3. СП 21.13330.2012. Здания и сооружения на подрабатываемых территориях и просадочных грунтах.
  4. ТСН 22-301-98. Здания на подрабатываемых территориях Верхнекамского месторождения калийных солей. Назначение строительных мер защиты.
  5. Руководство по проектированию зданий и сооружений на подрабатываемых территориях. Часть II. Промышленные и гражданские здания. – Москва : Стройиздат. – 1986. – 304 с.
  6. Ensuring safe operation of monolithic structures in undermined areas / G. N. Gusev, A. A. Baryakh, I. N. Shardakov, R. V. Tsvetkov // Diagnostics, Resource and Mechanics of materials and structures. ‑ 2023. ‑ Iss. 2. ‑ P. 6–18. ‑ DOI: 10.17804/2410-9908.2023.2.006-018. – URL: http://dream-journal.org/issues/2023-2/2023-2_394.html
  7. Деформационное взаимодействие панельных жилых домов с грунтом в зоне техногенного воздействия / Г. Н. Гусев, И. Н. Шардаков, А. А. Барях, И. О. Глот // Вычислительная механика сплошных сред. – 2023. – 16 (1). – С. 36–45. – DOI: 10.7242/1999-6691/2023.16.1.3.
  8. Menetrey P. H., Willam K. J. Triaxial failure criterion for concrete and its generalization // ACI Structural Journal. – 1995. – Vol. 92. – P. 311–318. – DOI: 10.14359/1132.
  9. Ottosen N. S. A failure criterion for concrete // ASCE Engineering Mechanics Division. – 1977. – 103 (4). – P. 527–535. – DOI: 10.1061/JMCEA3.0002248.
  10. Bazant Z. P., Yuyin X., Prat P. C. Microplane model for concrete. I: stress-strain boundaries and finite strain // Journal of Engineering Mechanics. – 1996. – Vol. 122 (3). – P. 245–254. – DOI: 10.1061/(ASCE)0733-9399(1996)122:3(245).
  11. Microplane model for concrete. II: data delocalization and verification / Z. P. Bazant, Y. Xiang, M. D. Adley, P. C. Prat, A. Akers // Journal of Engineering Mechanics. – 1996. – Vol. 122 (3). – P. 255–262. – DOI: 10.1061/(ASCE)0733-9399(1996)122:3(255).
  12. Valanis K. C., Read H. E. An endochronic plasticity theory for concrete // Mechanics of Materials. – 1986. – 5 (3). – P. 277–295. – DOI: 10.1016/0167-6636(86)90024-4.
  13. Bazant Z. P., Bhat P. D., Shieh C. L. Endochronic theory for inelasticity and failure analysis of concrete structures. – United States, 1976.
  14. Kachanov L. M. Introduction to Continuum Damage Mechanics. – Dordrecht : Springer, 1986. – 135 p.
  15. Krajcinovic D., Fonseka G. U. The continuous damage theory of brittle materials. Part 1: general theory // Journal of Applied Mechanics. – 1981. – Vol. 48 (4). ‑ P. 809–815. – DOI: 10.1115/1.3157739.
  16. Valanis K. A. Theory of viscoplasticity without a yield surface. Part 1. General Theory // Archives of Mechanics. – 1971. – Vol. 23. ‑ P. 517–533.
  17. Willam K. J., Warnke E. P. Constitutive model for the triaxial behavior of concrete // International Association for Bridge and Structural Engineering Proceedings. – 1975. – Vol. 19. – P. 1–30.
  18. Pisano A. A. An algorithmic approach for peak load evaluation of structural elements obeying a Menetrey-Willam type yield criterion // Electronic Journal of Differential Equations. – 2012. – 2012 (167). P. 1–9. – URL: https://ejde.math.txstate.edu/Volumes/2012/167/pisano.pdf
  19. Jasinski R. Validation of elastic-brittle, and elastic-plastic FEM model of the wall made of calcium silicate and AAC masonry units // IOP Conference Series: Materials Science and Engineering. – 2019. – 603 (3). – DOI: 10.1088/1757-899X/603/3/032001.
  20. Červenka J. and Papanikolaou V. K. Three dimensional combined fracture-plastic material model for concrete // International Journal of Plasticity. – 2008. – 24 (12). – P. 2192–2220. – DOI: 10.1016/j.ijplas.2008.01.004.
  21. Identification for a multivariable nonlinear constitutive model inside Ansys Workbench / F. Hokeš, J. Kala, M. Hušek, P. Král // Procedia Engineering. – 2016. – P. 892–897. – DOI: 10.1016/j.proeng.2016.08.743.
  22. Calibration and validation of the Menetrey-Willam constitutive model for concrete / A. Dmitriev, Yu. Novozhilov, D. Mikhalyuk, V. Lalin // Construction of Unique Buildings and Structures. – 2020. – Vol. 88 – 8804. – DOI:10.18720/CUBS.88.4.
  23. СП 15.13330.2020 Каменные и армокаменные конструкции СНиП II-2281.

PDF      

Библиографическая ссылка на статью

Gusev G. N., Korepanov V. V. The Features of the Deformation Behavior of Reinforced Masonry Structures under Technogenic Impact in Subsided Areas // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 131-142. -
DOI: 10.17804/2410-9908.2024.6.131-142. -
URL: http://dream-journal.org/issues/content/article_476.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru