Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. B. Vandyshev

RECOMMENDATIONS ON OPTIMIZING A NUMBER OF PROCESS AND DESIGN PARAMETERS OF MEMBRANE CATALYTIC DEVICES FOR PRODUCING HIGH-PURITY HYDROGEN FROM CRUDE HYDROCARBONS

DOI: 10.17804/2410-9908.2024.5.046-068

The paper offers a number of recommendations on optimizing the main process and design parameters of membrane catalytic devices. The recommendations are based on the analysis of the effect of these factors on the throughput and efficiency of the production of high-purity hydrogen from crude hydrocarbons with the application of a physically grounded and verified mathematical model.

Keywords: mathematical modeling, optimum process and design parameters, membrane catalytic devices, high-purity hydrogen, crude hydrocarbons

References:

  1. Vandyshev, A.B. Estimating the effect of some individual technological factors on the effectiveness of producing high-purity hydrogen from hydrocarbons in catalytic membrane devices. Diagnostics, Resource and Mechanics of materials and structures, 2022, 4, 6–36. DOI: 10.17804/2410-9908.4.006-036. Available at: http://dream-journal.org/issues/2022-4/2022-4_359.html
  2. Vandyshev, A.B. Estimating the effect of the main design parameters on the effectiveness of high-purity hydrogen production from raw hydrocarbons in membrane catalytic devices. Diagnostics, Resource and Mechanics of materials and structures, 2023, 4, 29–46. DOI: 10.17804/2410-9908.2023.4.029-046. Available at: http://dream-journal.org/issues/2023-4/2023-4_405.html
  3. Vandyshev, A.B. Analyzing the parameters of membrane catalytic systems for extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling. Diagnostics, Resource and Mechanics of materials and structures, 2016, 4, 6–45. DOI: 10.17804/2410-9908.2016.4.006-045. Available at: http://dream-journal.org/issues/2016-4/2016-4_87.html
  4. Shirasaki, Y., Tsuneki, T., Ota, Y., Yasuda, I., Tachibana, S., Nakajima, H., and Kobayashi, K. Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy, 2009, 34. DOI: 10.1016/j.ijhydene.2008.08.056.
  5. Shigarov, A.B., Кirillov, V.A., Аmosov, Yu.I., Brayko, A.S., Avakov, V.B., Landgraf, I.К., Urusov, A.R., Jivulko, S.A., and Izmaylovich, V.V. Membrane reformer module with Ni-foam catalyst for pure hydrogen production from methane: experimental demonstration and modeling. International Journal of Hydrogen Energy, 2017, 42, 6713–6726. DOI: 10.1016/j.ijhydene.2016.12.057.
  6. Dittmar, B., Behrens, A., Schödel, N., Rüttinger, M., Franco, Th., Straczewski, G., and Dittmeyer, R. Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes. International Journal of Hydrogen Energy, 2013, 38, 8759–8771. DOI: 10.1016/j.ijhydene.2013.05.030.
  7. Vandyshev, A.B. and Kulikov, V.A. Analysis of parameters for producing high-purity hydrogen from natural gas in a tubular type membrane-catalytic module. Chemical and Petrolium Engineering, 2021, 56, 715–720. DOI: 10.1007/s10556-021-00833-z.
  8. Vandyshev, A.B. and Kulikov, V.A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane. Chemical and Petroleum Engineering, 2019, 55 (9–10), 725–732. DOI: 10.1007/s10556-020-00686-y.
  9. Babak, V.N., Didenko, L.P., Kvurt, Y.P., Sementsova, L.A., and Zakiev, S.E. Simulation of steam methane reforming in a membrane reactor with a nickel catalyst and a palladium alloy foil. Theoretical Foundations of Chemical Engineering, 2021, 55 (3), 390–402. DOI: 10.1134/S0040579521030027.
  10. Zhivulko, S.A., Avakov, V.B., Langraft, I.K., and Urusov, A.P. Experience in the practical implementation of the hydrocarbon fuel conversion technology with hydrogen extraction from the reaction zone. In: Trudy V Vserossiyskoy konferentsii “Toplivnye Elementy i Energoustanovki na Ikh Osnove” [The Fifth All–Russian Conference on Fuel Cells and Power Plants Based on Them, Suzdal, June 17–21, 2018: Proceedings]. IFTT RAN Publ., Chernogolovka, 2018, 62–64. (In Russian).
  11. Lukyanov, B.N. Obtaining ultra-pure hydrogen for fuel cells in the reactors with membrane separation. Chemistry for Sustainable Development, 2012, 20 (3), 251–263.
  12. Baboshin, V.M., Buevich, Y.A., Ivonin, A.K., Kirnos, I.V., and Kukui, B.G. Diffusion separation of hydrogen from gas mixtures. Journal of Engineering Physics, 1984, 47, 821–826. DOI: 10.1007/BF00832599.
  13. Vandyshev, A.B., Kulikov, V.A., Kirnos, I.V., and Nikishin, S.N. High-temperature membrane apparatuses in systems for repeated utilization of hydrogen. Chemical and Petroleum Engineering, 2006, 42, 640–644. DOI: 10.1007/s10556-006-0155-5.
  14. Vandyshev, A.B., Kulikov, V.A., and Nikishin, S.N. Analysis of flow-rate characteristics of high-output membrane equipment for the production of ultra-pure hydrogen. Chemical and Petrolium Engineering, 2010, 46, 72–78. DOI: 10.1007/s10556-010-9294-9.

А. Б. Вандышев

РЕКОМЕНДАЦИИ ПО ОПТИМИЗАЦИИ РЯДА ТЕХНОЛОГИЧЕСКИХ И КОНСТРУКТИВНЫХ ПАРАМЕТРОВ МЕМБРАННО-КАТАЛИТИЧЕСКИХ УСТРОЙСТВ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ВОДОРОДА ИЗ УГЛЕВОДОРОДНОГО СЫРЬЯ

Приведен ряд рекомендаций по оптимизации основных технологических и конструктивных параметров мембранно-каталитических устройств на базе анализа влияния этих факторов на производительность и эффективность получения высокочистого водорода из углеводородного сырья с помощью физически обоснованной и верифицированной математической модели.

Ключевые слова: математическое моделирование, оптимальные технологические и конструктивные парамет-ры, мембранно-каталитические устройства, высокочистый водород, углеводородное сырье

Библиография:

  1. Vandyshev A. B. Estimating the effect of some individual technological factors on the effectiveness of producing high-purity hydrogen from hydrocarbons in catalytic membrane devices // Diagnostics, Resource and Mechanics of materials and structures. – 2022. – Iss. 4. – P. 6–36. – DOI: 10.17804/2410-9908.2023.4.029-046. – URL: http://dream-journal.org/issues/2022-4/2022-4_359.html
  2. Vandyshev A. B. Estimating the effect of the main design parameters on the effectiveness of high-purity hydrogen production from raw hydrocarbons in membrane catalytic devices // Diagnostics, Resource and Mechanics of materials and structures. – 2023. – Iss. 4. – P. 29–46. – DOI: 10.17804/2410-9908.2023.4.029-046. – URL: http://dream-journal.org/issues/2023-4/2023-4_405.html
  3. Vandyshev A. B. Analyzing the parameters of membrane catalytic systems for extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling // Diagnostics, Resource and Mechanics of materials and structures. – 2016. – Iss. 4. – P. 6–45. – DOI: 10.17804/2410-9908.2016.4.006-045. – URL: http://dream-journal.org/issues/2016-4/2016-4_87.html
  4. Development of membrane reformer system for highly efficient hydrogen production from natural gas / Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi // International Journal of Hydrogen Energy. – 2009. – Vol. 34 (10). – P. 4482–4487. – DOI: 10.1016/j.ijhydene.2008.08.056.
  5. Membrane reformer module with Ni-foam catalyst for pure hydrogen production from methane: experimental demonstration and modeling / A. B. Shigarov, V. A. Кirillov, Yu. I. Amosov, A. S. Brayko, V. B. Avakov, I. К. Landgraf, A. R. Urusov, S. A. Jivulko, V. V. Izmaylovich // International Journal of Hydrogen Energy. – 2017. – Vol. 42 (10). – P. 6713–6726. – DOI: 10.1016/j.ijhydene.2016.12.057.
  6. Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes / B. Dittmar, A. Behrens, N. Schödel, M. Rüttinger, Th. Franco, G. Straczewski, R. Dittmeyer // International Journal of Hydrogen Energy. – 2013. – Vol. 38. – P. 8759–8771. – DOI: 10.1016/j.ijhydene.2013.05.030.
  7. Vandyshev A. B., Kulikov V. A. Analysis of parameters for producing high-purity hydrogen from natural gas in a tubular type membrane-catalytic module // Chemical and Petrolium Engineering. – 2021. – Vol. 56. – P. 715–720. – DOI: 10.1007/s10556-021-00833-z.
  8. Vandyshev A. B., Kulikov V. A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane // Chemical and Petroleum Engineering. – 2019. – Vol. 55, Nos. 9–10. – P. 725–732. – DOI: 10.1007/s10556-020-00686-y.
  9. Simulation of steam methane reforming in a membrane reactor with a nickel catalyst and a palladium alloy foil / V. N. Babak, L. P. Didenko, Yu. P. Kvurt, L. A. Sementsova, S. E. Zakiev // Theoretical Foundations of Chemical Engineering. – 2021. – Vol. 55 (3). – P. 390–402. – DOI: 10.1134/S0040579521030027.
  10. Опыт практической реализации технологии конверсии углеводородного топлива с отбором водорода из зоны реакции / С. А. Живулько, В. Б. Аваков, И. К. Ланграфт, А. Р. Урусов // Труды V Всеросс. конф. «Топливные элементы и энергоустановки на их основе», Суздаль, 17–21 июня 2018 г. – Черноголовка : ИФТТ РАН, 2018. – С. 62–64.
  11. Lukyanov B. N. Obtaining ultra-pure hydrogen for fuel cells in the reactors with membrane separation // Chemistry for Sustainable Development. – 2012. – Vol. 20 (3). – P. 251–263.
  12. Diffusion separation of hydrogen from gas mixtures / V. M. Baboshin, Yu. A. Buevich, A. K. Ivonin, I. V. Kirnos, B. G. Kukui // Journal of Engineering Physics. – 1984. – Vol. 47. – P. 821–826. – DOI: 10.1007/BF00832599.
  13. High-temperature membrane apparatuses in systems for repeated utilization of hydrogen / A. B. Vandyshev, V. A. Kulikov, I. V. Kirnos, S. N. Nikishin // Chemical and Petroleum Engineering. – 2006. – Vol. 42. – P. 640–644. – DOI: 10.1007/s10556-006-0155-5.
  14. Vandyshev A. B., Kulikov V. A., Nikishin S. N. Analysis of flow-rate characteristics of high-output membrane equipment for the production of ultra-pure hydrogen // Chemical and Petrolium Engineering. – 2010. – Vol. 46. – P. 72–78. – DOI: 10.1007/s10556-010-9294-9.

PDF      

Библиографическая ссылка на статью

Vandyshev A. B. Recommendations on Optimizing a Number of Process and Design Parameters of Membrane Catalytic Devices for Producing High-Purity Hydrogen from Crude Hydrocarbons // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 5. - P. 46-68. -
DOI: 10.17804/2410-9908.2024.5.046-068. -
URL: http://dream-journal.org/issues/content/article_462.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru