Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. А. Sharapova, V. P. Shveykin, I.G. Margamov, V. Yu. Ivanov, O. V. Ryabukhin

INFRARED SPECTROSCOPY FOR EVALUATING THE EFFECT OF ELECTRON BEAM STERILIZATION ON POLYETHYLENE TEREPHTHALATE MEDICAL TUBES

DOI: 10.17804/2410-9908.2024.2.061-068

The paper studies the effect of electron beam sterilization on the polyethylene terephthalate parts of blood sampling systems. The structural state and crystallinity degree of polyethylene terephthalate are estimated from the analysis of infrared spectra. Relative intensities are calculated by the reference band (overall intensity level) at 1410 cm−1. The Gaussian intensities of the absorption bands for trans and gauche conformations with respect to reference band at 1505 cm–1 are calculated. The spectral coefficients D973/D795, D848/D795, D1042/D795, D895/D795, D1098/D1370, and D1255/D1370 are determined. The dose of up to 25 kGy has no significant effect on either the ratio of integral intensities or the ratio of trans and gauche conformations.

Acknowledgement: The work was supported by the IAEA, contract CRP F23035.

Keywords: polymers, irradiation embrittlement, infrared (IR) spectroscopy

References:

  1. Brooks, D.W. and Giles, G.A. PET Packaging Technology, Academic Press, Sheffield, 2002, 375 р.
  2. Cole, K.C., Guèvremont J., Ajji, A., and Dumoulin, M.M. Characterization of surface orientation in poly(ethylene terephthalate) by front-surface reflection infrared spectroscopy. Applied Spectroscopy, 1994, 1, 1513–1521. DOI: 10.1021/ma00236a008.
  3. Pintos, P.B., León, A.S., and Molina, S.I. Large format additive manufacturing of polyethylene terephthalate (PET) by material extrusion. Additive Manufacturing, 2024, 79, 103908. DOI: 10.1016/j.addma.2023.103908.
  4. Schmidt, P.G. Polyethylene terephthalate structural studies. Journal of Polymer Science. Part A: General Papers, 1963, 1 (4), 1271–1292. DOI: 10.1002/pol.1963.100010417.
  5. Petukhov, B. V. Polyefirnye volokna [Polyester Fibers]. Khimiya Publ., Moscow, 1976, 272 р. (In Russian).
  6. Roberge, М., Prud’homme, R.E., and Brisson, J. Molecular modelling of the uniaxial deformation of amorphous polyethylene terephthalate. Polymer, 2004, 45 (4), 1401–1411. DOI: 10.1016/j.polymer.2003.04.00.
  7. Shrubok, A.O. and Happi Wako, B.J. The estimation of the crystallinity degree of fine powders of secondary polyethylene terephthalate by IR-spectroscopy. In: Trudy BGTU, Ser. 2: Chemical Engineering, Biotechnologies, Geoecology, 2022, 2 (259), 41–48 (In Russian).
  8. Chen, Z., Hay, J.N., and Jenkins, M.J. FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization. European Polymer Journal, 2012, 48 (9), 1586–1610. DOI: 
  9. Dekhant, I., Dants, R., Kimmer, V., and Shmolke, R. Infrakrasnaia spektroskopiia polimerov [Infrared Spectroscopy of Polymers]. Khimiya Publ., Moscow, 1976. 472 p. (In Russian).
  10. Cole, K.C., Ajji, A., and Pellerin, E. New insights into the development of ordered structure in poly(ethylene terephthalate). 1. Results from external reflection infrared spectroscopy. Macromolecules, 2002, 35 (3), 770–784. DOI: 10.1021/ma011492i.
  11. Vijayakumar, S. and Rajakumar, P.R. Infrared spectral analysis of waste pet samples. International Letters of Chemistry, Physics and Astronomy, 2012, 4, 58–65. DOI: 10.56431/p-0wwmqk.
  12. Pereira, A., Silva, M., Junior, E., Paula, A., and Tommasini, F. Processing and characterization of PET composites reinforced with geopolymer concrete waste. Materials Research, 2017, 20 (2). DOI: 10.1590/1980-5373-MR-2017-0734.
  13. Kazitsina, L.A. and Kupletskaya, N.B. Primenenie UF-, IK-, YaMR i mass-spektroskopii v organicheskoy khimii [Application UV-, IR-, NMR- and Mass- Spectroscopy in the Organic Chemistry]. Izd-vo Mosk. Un-ta Publ., Moscow, 1979, 240 р. (In Russian).
  14. Wojdyr, M. Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 2010, 43, 1126–1128. DOI: 10.1107/S0021889810030499.
  15. Stas'kov, N.I. and Ivashkevich, I.V. Optical constants of poly(ethylene terephtalate) in the range of 1410-cm-1 IR absorbtion band. Polymer Science. Series B, 2008, 50, 120–123. DOI: 10.1134/S1560090408050047.
  16. Zhivulin, V.E., Evsyukov, S.E., Chalov, D.A., Morilova, V.M., Andreychuk, V.P., Khairanov, R.Kh., Margamov, I.G., and Pesin, L.A. Evolution of the molecular structure of partially dehydrofluorinated poly(vinylidene fluoride) films upon storage in air. while keeping in the air. Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques, 2022, 16 (5), 673–681. DOI: DOI:10.1134/S1027451022050214.
  17. González-Córdova, J.A., Ariza-Flores, D., Pérez-Huerta, J.S., Madrigal-Melchor, J., López-Miranda, A., and Ortega-Gallegos, J. Optical anisotropy Raman response of polyethylene terephthalate strained thin films. Physica B: Condensed Matter, 2023, 654, 414693. DOI: 10.1016/j.physb.2023.414693.
  18. Lin, S.-B. and Koenig, J.L. Spectroscopic characterization of the rotational conformations in the disordered phase of poly(ethylene terephthalate). Journal of Polymer Science. Part B: Polymer Physics, 1982, 20 (12), 2277–2295. DOI: 10.1002/pol.1982.180201209.
  19. Liu, J. and Koenig, J.L. Data processing techniques to extract pure-component spectra from mixture spectra and their application to polymeric systems. Analytical Chemistry, 1987, 59 (21), 2609–2615. DOI: 10.1021/ac00148a017.
  20. Hofmann, G.R., Sevegney, M.S., and Kannan, R.M. A rheo-optical FTIR spectrometer for investigating molecular orientation and viscoelastic behavior in polymers. International Journal of Polymer Analysis and Characterization, 2004, 9 (4), 245–274. DOI: 10.1080/10236660490920237.
  21. Kudashev, S.V., Arisova, V.N., Danilenko, T.I., Zheltobryukhov, V.F., Urmantsev, U.R., and Tabaev, B.V. Structural-morphological characteristics and properties of fluorine-containing surface-modified poly(ethilene terephthalate) films. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51 (1), 106–111. DOI: 10.1134/S2070205114050098.
  22. Tzavalas, S., Mouzakis, D.E., Drakonakis, V., and Gregoriou V.G. Polyethylene terephthalate-multiwall nanotubes nanocomposites: effect of nanotubes on the conformations, crystallinity and crystallization behavior of PET. Journal of Polymer Science. Part B: Polymer Physics, 2008, 46 (7), 668–676. DOI: 10.1002/polb.21378.
  23. Caire-Maurisier, F., Aymes-Chodur, C., Jandard, V., Bourrel, A., and Yagoubi, N. Effects of electron beam sterilization on polyethylene terephthalate: physico-chemical modifications and formation of non-volatile organic extractables. Annales Pharmaceutiques Françaises, 2019, 77 (4), 276–285. DOI: 10.1016/j.pharma.2019.02.001.

В. А. Шарапова, В. П. Швейкин, И. Г. Маргамов, В. Ю. Иванов, О. В. Рябухин

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ ДЛЯ ОЦЕНКИ ВОЗДЕЙСТВИЯ ЭЛЕКТРОННО-ЛУЧЕВОЙ СТЕРИЛИЗАЦИИ НА МЕДИЦИНСКИЕ ПРОБИРКИ ИЗ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА

В статье рассмотрено влияние электронно-лучевой стерилизации на полиэтилентерефталатные (ПЭТФ) части систем забора крови. Оценку структурного состояния и степени кристалличности ПЭТФ проводили на основе анализа инфракрасных (ИК) спектров. Относительные интенсивности полос поглощения рассчитывались по реперной полосе (общий уровень интенсивности) при 1410 см−1. Получено гауссовское распределение интенсивности полос поглощения для транс- и гош-конформаций относительно реперной полосы 1505 см–1. Определены спектральные коэффициенты D973/D795, D848/D795, D1042/D795, D895/D795, D1098/D1370, D1255/D1370. Доза стерилизующего излучения до 25 кГр не оказывает существенного влияния ни на соотношение интегральных интенсивностей, ни на соотношение транс- и гош-конформаций.

Благодарность: Работа выполнена при поддержке МАГАТЭ по контракту CRP F23035.

Ключевые слова: полимеры; радиационное охрупчивание; инфракрасная (ИК) спектроскопия

Библиография:

  1. Brooks D. W., Giles G. A. PET Packaging Technology. – Sheffield : Academic Press, 2002. – 375 р.
  2. . Characterization of surface orientation in poly(ethylene terephthalate) by front-surface reflection infrared spectroscopy / K. C. Cole, J. Guèvremont, A. Ajji, M. M. Dumoulin // Applied Spectroscopy. – 1994. – Vol. 1. – Р. 1513–1521. – DOI: 10.1021/ma00236a008.
  3. Pintos P. B., León A. S., Molina S. I. Large format additive manufacturing of polyethylene terephthalate (PET) by material extrusion // Additive Manufacturing. – 2024. – Vol. 79. – P. 103908. – DOI: 10.1016/j.addma.2023.103908.
  4. Schmidt P. G. Polyethylene terephthalate structural studies // Journal of Polymer Science. Part A: General Papers. – 1963. – Vol. 1 (4). – Р. 1271–1292. – DOI: 10.1002/pol.1963.100010417.
  5. Петухов Б. В. Полиэфирные волокна. – Москва : Химия, 1976. – 272 с.
  6. Roberge М., Prud’homme R. E., Brisson J. Molecular modelling of the uniaxial deformation of amorphous polyethylene terephthalate // Polymer. – 2004. – Vol. 45 (4). – Р. 1401–1411. – DOI: 10.1016/j.polymer.2003.04.005.
  7. Шрубок А. О., Хаппи Вако Б. Ж. Оценка степени кристалличности мелкодисперсных порошков вторичного полиэтилентерефталата методом ИК-спектроскопии // Труды БГТУ. Сер. 2. Химические технологии, биотехнологии, геоэкология. – 2022. – № 2. – С. 41–48.
  8. Chen Z., Hay J. N., Jenkins M. J. FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization // European Polymer Journal – 2012. – Vol. 48 (9). – Р. 1586–1610. – DOI: 10.1016/j.eurpolymj.2012.06.006.
  9. Инфракрасная спектроскопия полимеров / Й. Дехант, Р. Данц, В. Киммер, Р. Шмольке / пер. с нем. В. В. Архангельского; под ред. Э. Ф. Олейника. – Москва : Химия, 1976. – 471 с.
  10. Cole K. C., Ajji A., Pellerin E. New insights into the development of ordered structure in poly(ethylene terephthalate). 1. Results from external reflection infrared spectroscopy // Macromolecules. – 2002. – Vol. 35 (3). – Р. 770–784. – DOI:10.1021/MA011492I.
  11. Vijayakumar S., Rajakumar P. R. Infrared spectral analysis of waste pet samples // International Letters of Chemistry, Physics and Astronomy. – 2012. – Vol. 4. – P. 58–65. – DOI: 10.56431/p-0wwmqk.
  12. Processing and characterization of PET composites reinforced with geopolymer concrete waste / A. Pereira, M. Silva, E. Junior, A. Paula, F. Tommasini // Materials Research. – 2017. – Vol. 20 (suppl. 2). – DOI: 10.1590/1980-5373-MR-2017-0734.
  13. Казицына Л. Α., Куплетская Н. Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. – М. : Изд-во Моск. ун-та, 1979. – 240 с.
  14. Wojdyr M. Fityk: a general-purpose peak fitting program // Journal of Applied Crystallograhy. – 2010. – Vol. 43. – Р. 1126–1128. – DOI: 10.1107/S0021889810030499.
  15. Staskov N. I., Ivashkevich I. V. Optical constants of poly(ethylene terephtalate) in the range of 1410-cm-1 IR absorbtion band // Polymer Science. Series B. – 2008. – Vol. 50. – Р. 120–123. – DOI:10.1134/S1560090408050047.
  16. Evolution of the molecular structure of partially dehydrofluorinated poly(vinylidene fluoride) films upon storage in air / V. E. Zhivulin, S. E. Evsyukov, D. A. Chalov, V. M. Morilova, V. P. Andreychuk, R. Kh. Khairanov, I. G. Margamov, L. A. Pesin // Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques. – 2022. – Vol. 16 (5). – Р. 673–681. – DOI: 10.1134/S1027451022050214.
  17. Optical anisotropy Raman response of polyethylene terephthalate strained thin films / J. A. González-Córdova, D. Ariza-Flores, J. S. Pérez-Huerta, J. Madrigal-Melchor, A. López-Miranda, J. Ortega-Gallegos // Physica B: Condensed Matter. – 2023. – Vol. 654. – P. 414693. – DOI: 10.1016/j.physb.2023.414693.
  18. Lin S.-B., Koenig J. L. Spectroscopic characterization of the rotational conformations in the disordered phase of poly(ethylene terephthalate) // Journal of Polymer Science. Part B: Polymer Physics. – 1982. – Vol. 20 (12). – Р. 2277–2295. – DOI: 10.1002/pol.1982.180201209.
  19. Liu J., Koenig J. L. Data processing techniques to extract pure-component spectra from mixture spectra and their application to polymeric systems // Analytical Chemistry. – 1987. – Vol. 59 (21). – P. 2609–2615. DOI: 10.1021/ac00148a017.
  20. Hofmann G. R., Sevegney M. S., Kannan R. M. A rheo-optical FTIR spectrometer for investigating molecular orientation and viscoelastic behavior in polymers // International Journal of Polymer Analysis and Characterization. – 2004. – Vol. 9 (4). – Р. 245–274. – DOI: 10.1080/10236660490920237.
  21. Structural-morphological characteristics and properties of fluorine-containing surface-modified poly(ethilene terephthalate) films / S. V. Kudashev, V. N. Arisova, T. I. Danilenko, V. F. Zheltobryukhov, U. R. Urmantsev, B. V. Tabaev // Protection of Metals and Physical Chemistry of Surfaces. – 2015. – Vol. 51 (1). – Р. 106–111. – DOI: 10.1134/S2070205114050098.
  22. Polyethylene terephthalate-multiwall nanotubes nanocomposites: Effect of nanotubes on the conformations, crystallinity and crystallization behavior of PET / S. Tzavalas, D. E. Mouzakis, V. Drakonakis, V. G. Gregoriou // Journal of Polymer Science. Part B: Polymer Physics. – 2008. – Vol. 46 (7). – Р. 668–676. – DOI: 10.1002/polb.21378.
  23. Effects of electron beam sterilization on polyethylene terephthalate: physico-chemical modifications and formation of non-volatile organic extractables / F. Caire-Maurisier, C. Aymes-Chodur, V. Jandard, A. Bourrel, N. Yagoubi // Annales Pharmaceutiques Françaises. – 2019. – Vol. 77 (4). – Р. 276–285. – DOI: 10.1016/j.pharma.2019.02.001.

PDF      

Библиографическая ссылка на статью

Infrared Spectroscopy for Evaluating the Effect of Electron Beam Sterilization on Polyethylene Terephthalate Medical Tubes / V. А. Sharapova, V. P. Shveykin, I.G. Margamov, V. Yu. Ivanov, O. V. Ryabukhin // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 2. - P. 61-68. -
DOI: 10.17804/2410-9908.2024.2.061-068. -
URL: http://dream-journal.org/issues/content/article_441.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru