Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

L. F. Koroleva, M. N. Dobrinskaya, I. S. Kamantsev

DOPED NANOCRYSTALLINE CALCIUM CARBONATE-PHOSPHATE – A BIOMATERIAL FOR BONE REPAIR AND STRENGTHEINING BY DRUG DELIVERY

DOI: 10.17804/2410-9908.2015.5.147-157

It is demonstrated that doped nanocrystalline calcium carbonate-phosphate is a biocompatible material that influences actively the osteogenesis bone repair in fractures, strengthening of bone tissues for drug delivery regardless of age. The introduction of doped nanocrystalline calcium carbonate-phosphates into animals increases 5 times the mechanical strength of the bone tissue. The most durable bone may occur when doped silicon, iron and magnesium nanocrystalline calcium carbonate-phosphate is introduced into an animal. The results obtained indicate the possibility of producing bioceramics based on doped nanocrystalline calcium carbonate-phosphates.

Keywords: doped calcium carbonate-phosphate, bone repair, strengthening, drug delivery

References:

  1. Bouyer E., Gitzhofer F., Boulos M.I. Morphological study of hydroxyapatite nanocrystal suspension. Journal of Materials Science: Materials in Medicine, 2000, vol. 11, no. 8, pp. 523–531. DOI: 10.1023/A:1008918110156.
  2. Champion E. Sintering of calcium phosphate bioceramics. Acta Biomaterialia, 2013, vol. 9, iss. 4, pp. 5855–5875. DOI: 10.1016/j.actbio.2012.11.029.
  3. Samar J. Kalita, Abhilasha Bhardwaj, Himesh A. Bhatt. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering: C, 2007, vol.27, iss. 3, pp. 441–449. DOI: 10.1016/j.msec.2006.05.018.
  4. Hong Li, Min Ying Zhu, LiHua Li, ChangRen Zhou. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. Journal of Materials Science, 2008, vol. 43, iss. 1, pp. 384–389. DOI: 10.1007/s10853-007-2182-9.
  5. Rui-xue Sun, Yu-peng Lu. Fabrication and characterization of porous hydroxyapatite microspheres by spray-drying method. Frontiers of Materials Science in China, 2008, vol. 2, iss. 1, pp. 95–98. DOI: 10.1007/s11706-008-0017-5.
  6. Mohammadi M.S., Ahmed I., Muja N., Almeida S., Rudd C.D., Bureau M.N., Nazhat S.N. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites. Acta Biomaterialia, 2012, vol. 8, iss. 4, pp. 1616–1626. DOI: 10.1016/j.actbio.2011.12.030.
  7. Fomin A.S., Barinov S.M., Ievlev V.M., Smirnov V.V., Mikhailov B.P., Belonogov E.K., Drozdova N.A. Nanocrystalline Hydroxyapatite Ceramics Produced by Low-Temperature Sintering after High-Pressure Treatment. Doklady Chemistry, 2008, vol. 418, iss.1, pp. 22–25. DOI: 10.1134/S0012500808010084.
  8. Wopenka Brigitte, Pasteris Jill D. A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C, 2005, vol. 25, iss. 2, pp. 131–143. DOI: 10.1016/j.msec.2005.01.008.
  9. Brandt A., Henning S., Michler G., Hein W., Bernstein A., Schulz M. Nanocrystalline hydroxyapatite for bone repair: an animal study. Journal of Materials Science: Materials in Medicine, 2010, vol. 21, iss 1, pp. 283–294. DOI: 10.1007/s10856-009-3859-1.
  10. Tretyakov Yu.D. Development of inorganic chemistry as a fundamental for the design of new generations of functional materials. Russian Chemical Reviews, 2004, vol.73, pp. 831–846. DOI: 10.1070/RC2004v073n09ABEH000914.
  11. Shepherd Jennifer H, Shepherd David V., Best Serena M. Substituted hydroxyapatites for bone repair. Journal of Materials Science: Materials in Medicine, 2012, vol.23, iss. 10, pp. 2335–2347. DOI: 10.1007/s10856-012-4598-2.
  12. Xia Wei, Lindahl Carl, Persson Cecilia, Thomsen Peter, Lausmaa Jukka, Engqvist Håkan. Changes of Surface Composition and Morphology after Incorporation of Ions into Biomimetic Apatite Coatings. Journal of Biomaterials and Nanobiotechnology, 2010, vol.1, no. 1, pp. 7–16. DOI: 10.4236/jbnb.2010.11002.
  13. Dorozhkin S.V. Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter, 2011, vol. 1, iss 1, pp. 3–56. DOI: 10.4161/biom.1.1.16782.
  14. Bohner M. Resorbable biomaterials as bone graft substitutes. Materialstoday, 2010, vol. 13, iss. 1–2, pp. 24–30. DOI: 10.1016/S1369-7021(10)70014-6.
  15. Driessens F.C.M., Wolke J.G.C., Jansen J.A. A new theoretical approach to calcium phosphates, aqueous solutions and bone remodeling. Journal of the Australian Ceramic Society, 2012, vol. 48, iss. 2, pp. 144–149.
  16. Noor Zairin. Nanohydroxyapatite Application to Osteoporosis Management. Journal of Osteoporosis, 2013, vol. 2013, pp. 1–6. DOI: 10.1155/2013/679025.
  17. Parthiban S. Prakash, Kim Yong, Kikuta Koichi, Ohtsuki Chikara. Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. Journal of Materials Science: Materials in Medicine, 2011, vol. 22, iss. 2, pp. 209–216. DOI: 10.1007/s10856-010-4201-7.
  18. Ezhova Zh.A., Koval E.M., Zakharov N.A., Kalinnikov V.T. Synthesis and physicochemical characterization of nanocrystalline chitosan-containing calcium carbonate apatites. Russian Journal of Inorganic Chemistry, 2011, vol. 56, iss. 6, pp. 841–846. DOI: 10.1134/S0036023611060076.
  19. Barinov S.M. Calcium phosphate-based ceramic and composite materials for medicine. Russian Chemical Reviews, 2010, vol. 79, iss. 1, pp. 13–29. DOI: 10.1070/RC2010v079n01ABEH004098.
  20. Shepherd Jennifer H., Shepherd David V., Best Serena M. Substituted hydroxyapatites for bone repair. Journal of Materials Science: Materials in Medicine, 2012, vol. 23, iss.10, pp. 2335–2347. DOI: 10.1007/s10856-012-4598-2.
  21. Koroleva L.F. Doped Nanocrystalline Calcium Carbonate Phosphates. Inorganic Materials, 2010, vol. 46, iss. 4, pp. 405–411. DOI: 10.1134/S0020168510040151.
  22. Koroleva L.F., Larionov L.P., Gorbunova N.P. Doped calcium carbonate-phosphate-based biomaterial for active osteogenesis. Chapter 5. In: Osteogenesis, ed. by: Yunfeng Lin. InTech, Croatia, 2012. ISBN 978-953-51-0030-0. DOI: 10.5772/34119.
  23. Koroleva L.F., Larionov L.P., Gorbunova N.P. Biomaterial based on doped calcium carbonate-phosphate for Active Osteogenesis. Journal of Biomaterials & Nanobiotechnology, 2012, vol. 3, iss. 2, pp. 226–237. DOI: 10.4236/jbnb.2012.32028.
  24. Koroleva L.F., Cherednichenko N.V., Dobrinskaya M.N. Doped Nanocrystalline Calcium Carbonate-Phosphate Biomaterial with Transdermal Activity for Osteogenesis. Chapter 14. In: Navani Naveen Kumar, Sinha Shishir, eds. Nanotechnology. Biomaterials, vol. 11, USA-India, STUDIUM PRESS LLC, 2014. ISBN 1-626990-11-5.
  25. Koroleva L.F. An oscillating mechanism in the synthesis of doped nanocrystalline calcium carbonate phosphates. Nanotechnologies in Russia, 2010, vol. 5, iss. 9–10, pp. 635–640. ISSN 1995-0780.
  26. Larionov L.P., Koroleva L.F., Gaysina E.F., Dobrinskaya M.N. Development of new biologically active material for bone reconstruction and evaluation of its application security. Biomeditsina, 2011, no. 4, pp. 101–103. (In Russia).
  27. Ehrlich Hermann, Koutsoukos Petros G., Demadis Konstantinos D., Pokrovsky Oleg S. Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification. Micron, 2009, vol. 40, iss. 2, pp. 169–193. DOI:10.1016/j.micron.2008.06.004.
  28. Rodicheva G.V., Orlovsky V.P., Privalov V.P., Barinov S.M., Pustikelli F.S., Oskarson S. Synthesis and physical chemical research of calcium carbonate-hydroxyapatite of type A. Russian Journal Inorganic Chemistry, 2001, vol. 46, iss. 11, pp. 1798–1802.
  29. Lafon J.P., Champion E., Bernache-Assolant D. Processing of AB-type carbonated hydroxyapatite Ca10-x (PO4)6-x(CO3)x (OH)2-x-2y(CO3)y  ceramics with controlled composition. Journal of the European Ceramic Society, 2008, vol. 28, iss. 1, pp. 139147. DOI: 10.1016/j.jeurceramsoc.2007.06.009.
  30. Rhilassi A.E., Mourabet M., Boujaady H.E., Ramdane H., Bennani-Ziatni M., Hamri R.El, Taitai A. Release of DL- leucine by biomaterials: Apatitic calcium phosphates analogous to bone mineral. J. Mater. Environ. Sci, 2012, vol. 3, iss. 3, pp. 515–524.
  31. Koroleva L.F. Nanocrystalline doped calcium carbonate-phosphates as a biomaterial for osteogenesis. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, vol.5, iss.6, pp. 704–710.
  32. Roveri Norberto, Iafisco Michele. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnology Science and Applications, 2010, vol. 3, pp. 107–125. DOI: 10.2147/NSA.S9038.
       

Л. Ф. Королева, М. Н. Добринская, И. С. Каманцев

ДОПИРОВАННЫЙ НАНОКРИСТАЛЛИЧЕСКИЙ КАРБОНАТ-ФОСФАТ КАЛЬЦИЯ – БИОМАТЕРИАЛ ДЛЯ ВОССТАНОВЛЕНИЯ И УПРОЧНЕНИЯ КОСТЕЙ ПУТЕМ ТРАНСДЕРМАЛЬНОЙ ДОСТАВКИ

Показано, что допированный нанокристаллический карбонат-фосфат кальция является биосовместимым материалом, который активно воздействует на остеогенезис и ремонт костей при переломах, укрепление костной ткани путем чрезкожной доставки независимо от возраста. Введение допированного нанокристаллического карбонат-фосфат кальция животным увеличивает в 5 раз прочность костной ткани. Самая высокая прочность наблюдается, если вводится в организм допированный кремнием, железом и магнием нанокристаллический карбонат - фосфат кальция. Наши результаты указывают на возможность получения биокерамики на основе допированного нанокристаллического карбонат-фосфат кальция.

Ключевые слова: допированные карбонат-фосфаты кальция, восстановление кости, упрочнение, доставка лекарств

Библиография:

  1. Bouyer E., Gitzhofer F., Boulos M. I. Morphological study of hydroxyapatite nanocrystal suspension // Journal of Materials Science: Materials in Medicine. – 2000. – Vol. 11, no. 8. – P. 523–531. – DOI: 10.1023/A:1008918110156.
  2. Champion E. Sintering of calcium phosphate bioceramics // Acta Biomaterialia. – 2013. – Vol. 9, iss. 4. – P. 5855-5875. – DOI: 10.1016/j.actbio.2012.11.029.
  3. Samar J. Kalita, Abhilasha Bhardwaj, Himesh A. Bhatt. Nanocrystalline calcium phosphate ceramics in biomedical engineering // Materials Science and Engineering: C. – 2007. – Vol. 27, iss. 3. – P. 441–449. – DOI: 10.1016/j.msec.2006.05.018.
  4. Hong Li, Min Ying Zhu, LiHua Li, ChangRen Zhou. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions // Journal of Materials Science. – 2008. – Vol. 43, iss. 1. – P. 384–389. – DOI: 10.1007/s10853-007-2182-9.
  5. Rui-xue Sun, Yu-peng Lu. Fabrication and characterization of porous hydroxyapatite microspheres by spray-drying method // Frontiers of Materials Science in China. – 2008 – Vol. 2, iss. 1. – P. 95–98. – DOI: 10.1007/s11706-008-0017-5.
  6. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites / M. S. Mohammadi, I. Ahmed, N. Muja, S. Almeida, C. D. Rudd, M. N. Bureau, S. N. Nazhat // Acta Biomaterialia. – 2012. – Vol. 8, iss. 4. – P. 1616–1626. – DOI: 10.1016/j.actbio.2011.12.030.
  7. Nanocrystalline Hydroxyapatite Ceramics Produced by Low-Temperature Sintering after High-Pressure Treatment / A. S. Fomin, S. M. Barinov, Ievlev V. M., V. V. Smirnov, B. P. Mikhailov, E. K. Belonogov, N. A. Drozdova // Doklady Chemistry. – 2008. – Vol. 418, iss. 1. – P. 22–25. – DOI: 10.1134/S0012500808010084.
  8. Wopenka Brigitte, Pasteris Jill D. A mineralogical perspective on the apatite in bone // Materials Science and Engineering: C. – 2005. – Vol. 25, iss. 2. – P. 131–143. – DOI: 10.1016/j.msec.2005.01.008.
  9. Nanocrystalline hydroxyapatite for bone repair: an animal study / A. Brandt, S. Henning, G. Michler, W. Hein, A. Bernstein, M. Schulz // Journal of Materials Science: Materials in Medicine. – 2010. – Vol. 21, iss 1. – P. 283–294. – DOI: 10.1007/s10856-009-3859-1.
  10. Tretyakov Yu. D. Development of inorganic chemistry as a fundamental for the design of new generations of functional materials // Russian Chemical Reviews. – 2004. – Vol. 73. – P. 831–846. – DOI: 10.1070/RC2004v073n09ABEH000914.
  11. Shepherd Jennifer H, Shepherd David V., Best Serena M. Substituted hydroxyapatites for bone repair // Journal of Materials Science: Materials in Medicine. – 2012. – Vol. 23, iss. 10. – P. 2335–2347. – DOI: 10.1007/s10856-012-4598-2.
  12. Changes of Surface Composition and Morphology after Incorporation of Ions into Biomimetic Apatite Coatings / Wei Xia, Carl Lindahl, Cecilia Persson, Peter Thomsen, Jukka Lausmaa, Håkan Engqvist // Journal of Biomaterials and Nanobiotechnology. – 2010. – Vol. 1, no. 1. – P. 7–16. – DOI: 10.4236/jbnb.2010.11002.
  13. Dorozhkin S. V. Biocomposites and hybrid biomaterials based on calcium orthophosphates // Biomatter. – 2011. – Vol. 1, iss 1. – P. 3–56. – DOI: 10.4161/biom.1.1.16782.
  14. Bohner M. Resorbable biomaterials as bone graft substitutes // Materialstoday. – 2010. – Vol. 13, iss. 1–2. – P. 24–30. – DOI: 10.1016/S1369-7021(10)70014-6.
  15. Driessens F. C. M., Wolke J. G. C., Jansen J. A. A new theoretical approach to calcium phosphates, aqueous solutions and bone remodeling // Journal of the Australian Ceramic Society. – 2012. – Vol. 48, iss. 2. – P. 144–149.
  16. Noor Zairin. Nanohydroxyapatite Application to Osteoporosis Management // Journal of Osteoporosis. – 2013. – Vol. 2013. – P. 1–6. – DOI: 10.1155/2013/679025.
  17. Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing / S. Prakash Parthiban, Yong Kim, Koichi Kikuta, Chikara Ohtsuki // Journal of Materials Science: Materials in Medicine. – 2011. – Vol. 22, iss. 2. – P. 209–216. – DOI: 10.1007/s10856-010-4201-7.
  18. Synthesis and physicochemical characterization of nanocrystalline chitosan-containing calcium carbonate apatites / Zh. A. Ezhova, E. M. Koval, N. A. Zakharov, V. T. Kalinnikov // Russian Journal of Inorganic Chemistry. – 2011. – Vol. 56, iss. 6. – P. 841–846. – DOI: 10.1134/S0036023611060076.
  19. Barinov S. M. Calcium phosphate-based ceramic and composite materials for medicine // Russian Chemical Reviews. – 2010. – Vol. 79, iss. 1. – P. 13-29. – DOI: 10.1070/RC2010v079n01ABEH004098.
  20. Shepherd Jennifer H., Shepherd David V., Best Serena M. Substituted hydroxyapatites for bone repair // Journal of Materials Science: Materials in Medicine. – 2012. – Vol. 23, iss. 10. – P. 2335–2347. – DOI: 10.1007/s10856-012-4598-2.
  21. Koroleva L. F. Doped Nanocrystalline Calcium Carbonate Phosphates // Inorganic Materials. – 2010. – Vol. 46, iss. 4. – P. 405–411. – DOI: 10.1134/S0020168510040151.
  22. Koroleva L. F., Larionov L. P., Gorbunova N. P. Doped calcium carbonate-phosphate-based biomaterial for active osteogenesis. Chapter 5. // Osteogenesis / ed. by Yunfeng Lin. – Croatia : InTech Publ., 2012. – ISBN 978-953-51-0030-0. – DOI: 10.5772/34119.
  23. Koroleva L. F., Larionov L. P., Gorbunova N. P. Biomaterial based on doped calcium carbonate-phosphate for Active Osteogenesis // Journal of Biomaterials & Nanobiotechnology. – 2012. – Vol. 3, iss. 2. – P. 226–237. – DOI: 10.4236/jbnb.2012.32028.
  24. Koroleva L. F., Cherednichenko N. V., Dobrinskaya M. N. Doped Nanocrystalline Calcium Carbonate-Phosphate Biomaterial with Transdermal Activity for Osteogenesis. Chapter 14 // Nanotechnology. Biomaterials. Vol. 11/ ed. by Naveen Kumar Shishir, Navani Sinh. – USA-India : STUDIUM PRESS LLC, 2014. – ISBN 1-626990-11-5.
  25. Koroleva L. F. An oscillating mechanism in the synthesis of doped nanocrystalline calcium carbonate phosphates // Nanotechnologies in Russia. – 2010. – Vol. 5, iss. 9–10. P. 635–640. – ISSN 1995-0780.
  26. Development of new biologically active material for bone reconstruction and evaluation of its application security / L. P. Larionov, L. F. Koroleva, E. F. Gaysina, M. N. Dobrinskaya // Biomeditsina. – 2011. – No. 4. – P. 101–103. (In Russian).
  27. Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification / Hermann Ehrlich, Petros G. Koutsoukos, Konstantinos D. Demadis, Oleg S. Pokrovsky // Micron. – 2009. – Vol. 40, iss. 2. – P. 169–193. – DOI:10.1016/j.micron.2008.06.004.
  28. Synthesis and physical chemical research of calcium carbonate-hydroxyapatite of type A / G. V. Rodicheva, V. P. Orlovsky, V. P. Privalov, S. M. Barinov, F. S. Pustikelli, S. Oskarson // Russian Journal Inorganic Chemistry. – 2001. – Vol. 46, iss. 11. – P. 1798–1802.
  29. Lafon J. P., Champion E., Bernache-Assolant D. Processing of AB-type carbonated hydroxyapatite Ca10-x (PO4)6-x(CO3)x (OH)2-x-2y(CO3)y ceramics with controlled composition // Journal of the European Ceramic Society. – 2008. – Vol. 28, iss. 1. – P. 139–147. – DOI: 10.1016/j.jeurceramsoc.2007.06.009.
  30. Release of DL- leucine by biomaterials: Apatitic calcium phosphates analogous to bone mineral / A. E. Rhilassi, M. Mourabet, H. E. Boujaady, H. Ramdane, M. Bennani-Ziatni, R. El Hamri, A. J. Taitai // Mater. Environ. Sci. – 2012. – Vol. 3, iss. 3. – P. 515–524.
  31. Koroleva L. F. Nanocrystalline doped calcium carbonate-phosphates as a biomaterial for osteogenesis // Research Journal of Pharmaceutical, Biological and Chemical Sciences. – 2014. – Vol.5, iss. 6. – P. 704–710.Roveri
  32. Roveri Norberto, Iafisco Michele. Evolving application of biomimetic nanostructured hydroxyapatite // Nanotechnology Science and Applications. – 2010. – Vol. 3. – P. 107–125. – DOI: 10.2147/NSA.S9038.

PDF      

Библиографическая ссылка на статью

Koroleva L. F., Dobrinskaya M. N., Kamantsev I. S. Doped Nanocrystalline Calcium Carbonate-Phosphate – a Biomaterial for Bone Repair and Strengtheining by Drug Delivery // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 5. - P. 147-157. -
DOI: 10.17804/2410-9908.2015.5.147-157. -
URL: http://dream-journal.org/issues/content/article_40.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru