Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

M. Y. Filimonov, N. A. Vaganova

SOME PROBLEMS OF HEAT AND MASS TRANSFER DURING THE OPERATION OF ENGINEERING SYSTEMS IN MULTIPHASE ENVIRONMENTS

DOI: 10.17804/2410-9908.2023.4.015-028

Three types of problems related to problems of heat and mass transfer in the soil are considered. The first class of problems deals with the diagnostics of damage of underground pipelines by thermal fields on the soil surface. The second type studies the dynamics of changes in the temperature of a geothermal reservoir depending on the temperature of the water entering this reservoir and the pressure gap between injection and production wells. The third-type problems consider the propagation of non-stationary thermal fields in the soil from operated engineering systems in the permafrost. The main attention is paid to long-term forecasting of the propagation of non-stationary thermal fields in the frozen soil between operating production wells of northern oil and gas fields. In problems of the first two classes, which served as a basis for the development of problems of the third type, water filtration in the soil is considered, and thermal fields propagate in single-phase media. The third-class problems take into account possible phase transitions in the soil when describing non-stationary thermal fields in permafrost soils, leading to Stefan-type problems. Accounting for water migration for the specific third-type problems on the determination of the radius of frozen soil thawing from production wells in northern oil and gas fields does not significantly affect this process since lateral water migration above the groundwater level is minimal. Therefore, only the latent heat of the initial water content is taken into consideration. This paper discusses a mathematical model containing the most significant physical and climatic data affecting the distribution of thermal fields in permafrost rocks and presents the results of numerical calculations.

Acknowledgement: The Uran supercomputer, IMM UB RAS, was used in the numerical calculations.

Keywords: heat and mass transfer, wells, permafrost, computer modelling

References:

  1. Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H.H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M.O., Lewkowicz, A.G., Panda, S.K., Romanovsky, V., Way, R.G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews, 2019, 193, 136–155. DOI: 10.1016/j.earscirev.2019.04.023.
  2. Obu, J. How much of the Earth's surface is underlain by permafrost? Journal of Geophysical Research: Earth Surface, 2021, 126, e2021JF006123. DOI: 10.1029/2021JF006123.
  3. Romanovsky, V.E., Drozdov, D.S., Oberman, N.G., Malkova, G.V., Kholodov, A.L., Marchenko, S.S., Moskalenko, N.G., Sergeev, D.O., Ukraintseva, N.G., Abramov, A.A., Gilichinsky, D.A., and Vasiliev, A.A. Thermal state of permafrost in Russia. Permafrost and Periglacial Processes, 2010, 21, 136–155. DOI: 10.1002/ppp.683.
  4. Nitzbon, J., Westermann, S., Langer, M., Martin, Léo C.P., Strauss, J., Laboor, S., and Boike, J. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nature Communications, 2020, 11, 2201. DOI: 10.1038/s41467-020-15725-8.
  5. Vaganova, N. and Filimonov, M.Yu. Different shapes of constructions and their effects on permafrost. AIP Conference Proceedings, 2016, 1789, 020019. DOI: 10.1063/1.4968440.
  6. Gladkikh, V.S., Ilin, V.P., Petukhov, A.V., and Krylov, A.M. Numerical modeling of non-stationary heat problems in a two-phase medium. Journal of Physics: Conference Series, 2021, 1715 (1), 012002. DOI: 10.1088/1742-6596/1715/1/012002.
  7. Wu, Q., Zhang, Z., Gao, S., and Ma, W. Thermal impacts of engineering activities on permafrost in different alpine ecosystems in Qinghai-Tibet Plateau, China. The Cryosphere, 2016, 10, 1695–1706. DOI: 10.5194/tc-10-1695-2016.
  8. Schneider von Deimling, T., Lee, H., Ingeman-Nielsen, T., Westermann, S., Romanovsky, V., Lamoureux, S., Walker, D.A., Chadburn, S., Trochim, E., Cai, L., Nitzbon, J., Jacobi, S., and Langer, M. Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales. The Cryosphere, 2021, 15, 2451–2471. DOI: 10.5194/tc-15-2451-2021.
  9. Nelson, F.E., Anisimov, O.A., and Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature, 2001, 410 (6831), 889–890. DOI: 10.1038/35073746.
  10. Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D., Miller, J.R., Ning, L., Ohmura, A., Palazz, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S.N., and Yang, D.Q. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5, 424–430. DOI: 10.1038/nclmate2563.
  11. Guo, D. and Wang, H. CMIP5 permafrost degradation projection: a comparison among different regions. Journal of Geophysical Research: Atmospheres, 2016, 121 (9), 4499–4517. DOI: 10.1002/2015JD024108.
  12. Guo, D. and Wang, H. Permafrost degradation and associated ground settlement estimation under 2°C global warming. Climate Dynamics, 2017, 49, 2569–2583. DOI: 10.1007/s00382-016-3469-9.
  13. Chadburn, S.E., Burke, E.J., Cox, P.M., Friedlingstein, P., Hugelius, G., and Westermann, S. An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7, 340–344. DOI: 10.1038/nclimate3262.
  14. Wang, K., Zhang, T., Zhang, X., Clow, G.D., Jafarov, E.E., Overeem, I., Romanovsky, V., Peng, X., and Cao, B. Continuously amplified warming in the Alaskan Arctic: implications for estimating global warming hiatus. Geophysical Research Letters, 2017, 44, 9029–9038. DOI: 10.1002/2017GL074232.
  15. Vasiliev, A.A., Drozdov, D.S., Gravis, A.G., Malkova, G.V., Nyland, K.E., and Streletskiy, D.A. Permafrost degradation in the Western Russian Arctic. Environmental Research Letters, 2020, 15, 045001. DOI: 10.1088/1748-9326/ab6f12.
  16. Alexandrov, G.A., Ginzburg, V.A., Insarov, G.E., and Romanovskaya, A.A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Climatic Change, 2021, 169 (3), 1–11. DOI: 10.1007/s10584-021-03292-w.
  17. Biskaborn, B.K., Smith, S.L, Noetzli, J., et al. Permafrost is warming at a global scale. Nature Communications, 2019, 10 (1), 264. DOI: 10.1038/s41467-018-08240-4.
  18. Moiseev, V., Komarova, T., and Petryaev, A. Year-round thermal stabilization of permafrost soils during road construction in the northern climatic zone of Russia. E3S Web Conf., 2023, 383, 02010. DOI: 10.1051/e3sconf/202338302010.
  19. Vaganova, N.A. and Filimonov, M.Yu. Simulation of cooling devices and effect for thermal stabilization of soil in a cryolithozone with anthropogenic impact. Lecture Notes in Computer Science, 2019, 11386, 580–587. DOI 10.1007/978-3-030-11539-5_68.
  20. Vaganova, N.A. Mathematical model of testing of pipeline integrity by thermal fields. AIP Conference Proceedings, 2014, 1631, 37–41. DOI 10.1063/1.4902455.
  21. Vaganova, N.A. Simulation of thermal fields from an underground pipeline at the ground surface. AIP Conference Proceedings, 2017, 1910, 020005. DOI 10.1063/1.5013942.
  22. Vaganova, N.A. and Filimonov, M.Yu. Numerical analysis and diagnostics of pipelines by thermal fields. AIP Conference Proceedings, 2020, 2312, 050026. DOI: 10.1063/5.0035412.
  23. Bashurov, V.V., Vaganova, N.A., and Filimonov, M.Yu. Numerical Simulation of Thermal Conductivity Processes with Fluid Filtration in Soil. Vychislitelnye Tekhnologii, 2011, 16 (4), 3–18. (In Russian).
  24. Vaganova, N. and Filimonov, M.Yu. Refinement of model of an open geothermal system. AIP Conference Proceedings, 2016, 1789, 020020. DOI: 10.1063/1.4968441.
  25. Filimonov, M.Yu., Akimova, E.N., Misilov, V.E., and Vaganova, N.A. Numerical simulation of temperature fields in an open geothermal system on multicore processors. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8 (2), 76. DOI: 10.1007/s40948-022-00386-2.
  26. Filimonov, M.Yu. and Vaganova, N.A. Optimal simulation of design and operation of geothermal systems. In: Y. Noorollahi, M.N. Naseer, M.M. Siddiqi, eds. Utilization of Thermal Potential of Abandoned Wells: Fundamentals, Applications and Research, Academic Press, 2022, 3, 35–57. DOI: 10.1016/B978-0-323-90616-6.00003-8.
  27. Kamnev, Ya.K., Filimonov, M.Yu., Shein, A.N., and Vaganova, N.A. Automated monitoring the temperature under buildings with pile foundations in Salekhard (preliminary results). Geography, Environment, Sustainability, 2021, 14 (4), 75–82. DOI: 10.24057/2071-9388-2021-021.
  28. Filimonov, M.Yu., Kamnev, Ya.K., Shein, A.N., and Vaganova, N.A. Modeling the temperature field in frozen soil under buildings in the city of Salekhard taking into account temperature monitoring. Land, 2022, 11 (7), 1102. DOI: 10.3390/land11071102.
  29. Filimonov, M.Yu. and Vaganova N.A. Thawing of permafrost during the operation of wells of North-Mukerkamyl oil and gas field. Journal of Siberian Federal University. Mathematics & Physics, 2021, 14 (6), 795–804. DOI: 10.17516/1997-1397-2021-14-6-795-804.
  30. Filimonov, M. and Vaganova, N. Permafrost thawing from different technical systems in Arctic regions. IOP Conference Series: Earth and Environmental Science, 2017, 72, 012006. DOI: 10.1088/1755-1315/72/1/012006.
  31. Samarskii, A.A. and Moiseyenko, B.D. An economic continuous calculation scheme for the Stefan multidimensional problem. USSR Computational Mathematics and Mathematical Physics, 1965, 5 (5), 43–58. DOI: 10.1016/0041-5553(65)90004-2.
  32. Samarsky, A.A. and Vabishchevich, P.N. Computational Heat Transfer, Vol. 2: The Finite Difference Methodology, Wiley, New York, Chichester, 1995, 432 p.
  33. Lamontagne-Hallé, P., McKenzie, J.M., Kurylyk, B.L., Molson, J., and Lyon, L.N. Guidelines for cold-regions groundwater numerical modeling. WIREs Water, 2020, 7 (6). DOI: 10.1002/wat2.1467.
  34. Yang, X., Hu, J., Ma, R., and Sun, Z. Integrated hydrologic modelling of groundwater-surface water interactions in cold regions. Front. Earth Sci., 2021, 9, 721009. DOI: 10.3389/feart.2021.721009.
  35. Hinkel, K.M., Outcalt, S.I., and Taylor, A.E. Seasonal patterns of coupled flow in the active layer at three sites in northwest north America. Canadian Journal of Earth Sciences, 1997, 34 (5), 667–678. DOI: 10.1139/e17-053.
  36. Kurylyk, B.L. and Watanabe, K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Advances in Water Resources. 2013, 60, 160–177. DOI: 10.1016/j.advwatres.2013.07.016.
  37. Kurylyk, B.L., Hayashi, M., Quinton, W.L., McKenzie, J.M., and Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resources Research, 2016, 52, 20, 1286–1305. DOI: 10.1002/2015WR018057.
  38. Magnússon, R.Í., Hamm, A., Karsanaev, S.V., Limpens, J., Kleijn, D., Frampton, A., Maximov, T.C., and Heijmans, M.M.P.D. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nature Communications, 2022, 13, 1556. DOI: 10.1038/s41467-022-29248-x.
  39. Painter, S.L, Karra, S. Constitutive model for unfrozen water content in subfreezing unsaturated soils. Vadose Zone Journal, 2014, 13 (4), 1–8. DOI: 10.2136/vzj2013.04.0071.
  40. Sjöberg, Y., Coon, E., Sannel, A.B.K.R., Pannetier, R., Harp, D., Frampton, A., Painter, S.L., and Lyon, S.W. Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resources Research, 2016, 52 (3), 1591–1606. DOI: 10.1002/2015WR017571.
  41. Orgogozo L., Prokushkin A.S., Pokrovsky, O.S., Grenier, C., Quintard, M., Viers, J., Audry, S. Water and energy transfer modelling in a permafrost-dominated, forested catchment of Central Siberia: the key role of rooting depth. Permafrost and Periglacial Processes, 2019, 30, 75–89. DOI: 10.1002/ppp.1995.
  42. Sergeyev F., Kiselyov, F. Iterative refinement of the boundary condition in the numerical solution of the thermoelasticity problem. In: P. Akimov, N. Vatin, eds. Proceedings of FORM 2021, Series Lecture Notes in Civil Engineering, Springer, Cham, 2022, 170, 329–338. DOI: 10.1007/978-3-030-79983-0_31.

M. Ю. Филимонов, Н. А. Ваганова

НЕКОТОРЫЕ ЗАДАЧИ ТЕПЛОМАССОПЕРЕНОСА ПРИ ЭКСПЛУАТАЦИИ ТЕХНИЧЕСКИХ СИСТЕМ В МНОГОФАЗНЫХ СРЕДАХ

Рассматриваются три типа задач, связанных с задачами тепломассопереноса в грунте. Первый класс задач связан с диагностикой повреждений подземных трубопроводов по тепловым полям на поверхности грунта. Второй тип задач посвящен исследованию динамики изменения температуры геотермального резервуара в зависимости от температуры воды, поступающей в этот резервуар, и перепада давлений между нагнетательными и добывающими скважинами. Третий класс задач посвящен изучению распространения нестационарных тепловых полей в грунте от эксплуатируемых технических систем в районе распространения вечной мерзлоты. Основное внимание уделено долгосрочному прогнозированию распространения нестационарных тепловых полей в мерзлом грунте между работающими добывающими скважинами северных нефтегазовых месторождений. В первых двух классах задач, которые послужили основой для разработки задач третьего типа, учитывается фильтрация жидкости в грунте, а тепловые поля распространяются в однофазных средах. В третьем классе задач учитываются возможные фазовые переходы в грунте при описании нестационарных тепловых полей в многолетнемерзлых грунтах, приводящих к задачам типа Стефана. Учет миграции жидкости для конкретных рассматриваемых задач третьего типа, связанных с определением радиуса оттаивания мерзлого грунта от добывающих скважин на северных нефтегазовых месторождениях, не оказывает существенного влияния на этот процесс, поскольку боковая миграция воды выше уровня грунтовых вод минимальна. Поэтому учитывается только скрытая теплота начального содержания воды. В предложенной работе рассматривается математическая модель, содержащая наиболее существенные физические и климатические данные, влияющие на распространение тепловых полей в многолетнемерзлых породах, приводятся результаты численных расчетов.

Благодарность: При проведении численных расчетов был использован суперкомпьютер «Уран» ИММ УрО РАН.

Ключевые слова: тепломассоперенос, скважины, вечная мерзлота, компьютерное моделирование

Библиография:

  1. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale / J. Obu, S. Westermann, A. Bartsch, N. Berdnikov, H. H. Christiansen, A. Dashtseren, R. Delaloye, B. Elberling, B. Etzelmüller, A. Kholodov, A. Khomutov, A. Kääb, M. O. Leibman, A. G. Lewkowicz, S. K. Panda, V. Romanovsky, R. G. Way, A. Westergaard-Nielsen, T. Wu, J. Yamkhin, D. Zou // Earth-Science Reviews. – 2019. – Vol. 193. – P. 136–155. – DOI: 10.1016/j.earscirev.2019.04.023.
  2. Obu J. How much of the Earth's surface is underlain by permafrost? // Journal of Geophysical Research: Earth Surface. – 2021. – Vol. 126. – P. e2021JF006123. – DOI: 10.1029/2021JF006123.
  3. Thermal state of permafrost in Russia / V. E. Romanovsky, D. S. Drozdov, N. G. Oberman, G. V. Malkova, A. L. Kholodov, S. S. Marchenko, N. G. Moskalenko, D. O. Sergeev, N. G. Ukraintseva, A. A. Abramov, D. A. Gilichinsky, A. A. Vasiliev // Permafrost and Periglacial Processes. – 2010. – Vol. 21. – P. 136–155. – DOI: 10.1002/ppp.683.
  4. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate / J. Nitzbon, S. Westermann, M. Langer, L. C. P. Martin, J. Strauss, S. Laboor, J. Boike // Nature Communications. – 2020. – Vol. 11. – P. 2201. – DOI: 10.1038/s41467-020-15725-8.
  5. Vaganova N., Filimonov M. Yu. Different shapes of constructions and their effects on permafrost // AIP Conference Proceedings. – 2016. – Vol. 1789. – P. 020019. – DOI: 10.1063/1.4968440.
  6. Numerical modeling of non-stationary heat problems in a two-phase medium / V. S. Gladkikh, V. P. Ilin, A. V. Petukhov, A. M. Krylov // Journal of Physics: Conference Series. 2021. – Vol. 1715, No. 1. – P. 012002. – DOI: 10.1088/1742-6596/1715/1/012002.
  7. Thermal impacts of engineering activities on permafrost in different alpine ecosystems in Qinghai-Tibet Plateau, China / Q. Wu, Z. Zhang, S. Gao, W. Ma // The Cryosphere. – 2016. – Vol. 10. – P. 1695–1706. – DOI: 10.5194/tc-10-1695-2016.
  8. Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales / T. Schneider von Deimling, H. Lee, T. Ingeman-Nielsen, S. Westermann, V. Romanovsky, S. Lamoureux, D. A. Walker, S. Chadburn, E. Trochim, L. Cai, J. Nitzbon, S. Jacobi, M. Langer // The Cryosphere. – 2021. – Vol. 15. – P. 2451–2471. – DOI: 10.5194/tc-15-2451-2021.
  9. Nelson F. E., Anisimov O. A., Shiklomanov N. I. Subsidence risk from thawing permafrost // Nature. – 2001. – Vol. 410, No. 6831. – P. 889–890. – DOI: 10.1038/35073746.
  10. Elevation-dependent warming in mountain regions of the world / N. Pepin, R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, H. Fowler, G. Greenwood, M. Z. Hashmi, X. D. Liu, J. R. Miller, L. Ning, A. Ohmura, E. Palazz, I. Rangwala, W. Schöner, I. Severskiy, M. Shahgedanova, M. B. Wang, S. N. Williamson, D. Q. Yang // Nature Climate Change. 2015. – Vol. 5. – P. 424–430. – DOI: 10.1038/nclmate2563.
  11. Guo D., Wang H. CMIP5 permafrost degradation projection: a comparison among different regions // Journal of Geophysical Research: Atmospheres. – 2016. – Vol. 121. – P. 4499–4517. – DOI: 10.1002/2015JD024108.
  12. Guo D., Wang H. Permafrost degradation and associated ground settlement estimation under 2°C global warming // Climate Dynamics. – 2017. – Vol. 49. – P. 2569–2583. – DOI: 10.1007/s00382-016-3469-9.
  13. An observation-based constraint on permafrost loss as a function of global warming / S. E. Chadburn, E. J. Burke, P. M. Cox, P. Friedlingstein, G. Hugelius, S. Westermann // Nature Climate Change. – 2017. – Vol. 7. – P. 340–344. – DOI: 10.1038/nclimate3262.
  14. Continuously amplified warming in the Alaskan Arctic: implications for estimating global warming hiatus / K. Wang, T. Zhang, X. Zhang, G. D. Clow, E. E. Jafarov, I. Overeem, V. Romanovsky, X. Peng, B. Cao // Geophysical Research Letters. – 2017. – Vol. 44. – P. 9029–9038. – DOI: 10.1002/2017GL074232.
  15. Permafrost degradation in the Western Russian Arctic / A. A. Vasiliev, D. S. Drozdov, A. G. Gravis, G. V. Malkova, K. E. Nyland, D. A. Streletskiy // Environmental Research Letters. – 2020. – Vol. 15. – P. 045001. – DOI: 10.1088/1748-9326/ab6f12.
  16. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario / G. A. Alexandrov, V. A. Ginzburg, G. E. Insarov, A. A. Romanovskaya // Climatic Change. – 2021. – Vol. 169, No. 3. – P. 1–11. – DOI: 10.1007/s10584-021-03292-w.
  17. Permafrost is warming at a global scale / B. K. Biskaborn, S. L Smith, J. Noetzli, et al. // Nature Communications. – 2019. – Vol. 10. – DOI: 10.1038/s41467-018-08240-4.
  18. Moiseev V., Komarova T., Petryaev A. Year-round thermal stabilization of permafrost soils during road construction in the northern climatic zone of Russia // E3S Web Conf. – 2023. – Vol. 383. – P. 02010. – DOI: 10.1051/e3sconf/202338302010.
  19. Vaganova N. A., Filimonov M. Yu. Simulation of cooling devices and effect for thermal stabilization of soil in a cryolithozone with anthropogenic Impact // Lecture Notes in Computer Science. – 2019. – Vol. 11386. – P. 580–587. – DOI: 10.1007/978-3-030-11539-5_68.
  20. Vaganova N. A. Mathematical model of testing of pipeline integrity by thermal fields // AIP Conference Proceedings. – 2014. – Vol. 1631. – P. 37–41. – DOI 10.1063/1.4902455.
  21. Vaganova N. A. Simulation of thermal fields from an underground pipeline at the ground surface // AIP Conference Proceedings. – 2017. – Vol. 1910. – P. 020005. – DOI: 10.1063/1.5013942.
  22. Vaganova N. A., Filimonov M. Yu. Numerical analysis and diagnostics of pipelines by thermal fields // AIP Conference Proceedings. – 2020. – Vol. 2312. – P. 050026. – DOI: 10.1063/5.0035412.
  23. Башуров В. В., Ваганова Н. А., Филимонов М. Ю. Численное моделирование процессов теплообмена в грунте с учетом фильтрации жидкости // Вычислительные технологии. – 2011. – Т. 16, № 4. – С. 3–18.
  24. Vaganova N., Filimonov M. Yu. Refinement of model of an open geothermal system // AIP Conference Proceedings. – 2016. – Vol. 1789. – P. 020020. – DOI: 10.1063/1.4968441.
  25. Numerical simulation of temperature fields in an open geothermal system on multicore processors / M. Yu. Filimonov, E. N. Akimova, V. E. Misilov, N. A. Vaganova // Geomechanics and Geophysics for Geo-Energy and Geo-Resources. – 2022. – Vol. 8, iss. 2. – P. 76. – DOI: 10.1007/s40948-022-00386-2.
  26. Filimonov M. Yu., Vaganova N. A. Optimal simulation of design and operation of geothermal systems. Utilization of Thermal Potential of Abandoned Wells: Fundamentals, Applications and Research / ed. by Y. Noorollahi, M. N. Naseer, M. M. Siddiqi. – Cambridge : Academic Press, 2022. – Ch. 3. – P. 35–57. – DOI: 10.1016/B978-0-323-90616-6.00003-8.
  27. Automated monitoring the temperature under buildings with pile foundations in Salekhard (preliminary results) / Ya. K. Kamnev, M. Yu. Filimonov, A. N. Shein, N. A. Vaganova // Geography, Environment, Sustainability. – 2021. – Vol. 14, No. 4. – P. 75–82. – DOI: 10.24057/2071-9388-2021-021.
  28. Modeling the temperature field in frozen soil under buildings in the city of Salekhard taking into account temperature monitoring / M. Yu. Filimonov, Ya. K. Kamnev, A. N. Shein, N. A. Vaganova // Land. – 2022. – Vol. 11, No. 7. – P. 1102. – DOI: 10.3390/land11071102.
  29. Filimonov M. Yu., Vaganova N. A. Thawing of permafrost during the operation of wells of North-Mukerkamyl oil and gas field // Journal of Siberian Federal University. Mathematics & Physics. – 2021. – Vol. 14, No. 6. – P. 795–804. – DOI: 10.17516/1997-1397-2021-14-6-795-804.
  30. Filimonov M., Vaganova N. Permafrost thawing from different technical systems in Arctic regions // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 72. – P. 012006. – DOI: 10.1088/1755-1315/72/1/012006.
  31. Samarskii A. A., Moiseyenko B. D. An economic continuous calculation scheme for the Stefan multidimensional problem // USSR Computational Mathematics and Mathematical Physics. – 1965. – Vol. 5, No. 5. – P. 43–58. – DOI: 10.1016/0041-5553(65)90004-2.
  32. Самарский А. А., Вабищевич П. Н. Вычислительная теплопередача. – М. : Едиториал УРСС, 2003. – 784 с.
  33. Guidelines for cold-regions groundwater numerical modeling / P. Lamontagne-Hallé, J. M. McKenzie, B. L. Kurylyk, J. Molson, L. N. Lyon // WIREs Wate. – 2020. – Vol. 6, No. 7. – DOI: 10.1002/wat2.1467.
  34. Integrated hydrologic modelling of groundwater-surface water interactions in cold regions / X. Yang, J. Hu, R. Ma, Z. Sun // Front. Earth Sci. – 2021. – Vol. 9. – DOI: 10.3389/feart.2021.721009.
  35. Hinkel K. M., Outcalt S. I., Taylor A. E. Seasonal patterns of coupled flow in the active layer at three sites in northwest north America // Canadian Journal of Earth Sciences. – 1997. – Vol. 34. – P. 667–678. – DOI: 10.1139/e17-053.
  36. Kurylyk B. L., Watanabe K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils // Advances in Water Resources. – 2013. – Vol. 60. – P. 160–177. – DOI: 10.1016/j.advwatres.2013.07.016.
  37. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow / B. L. Kurylyk, M. Hayashi, W. L. Quinton, J. M. McKenzie, C. I. Voss // Water Resources Research. – 2016. – Vol. 52. – P. 1286–1305. – DOI: 10.1002/2015WR018057.
  38. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra / R. Í. Magnússon, A. Hamm, S. V. Karsanaev, J. Limpens, D. Kleijn, A. Frampton, T. C. Maximov, M. M. P. D. Heijmans // Nature Communications. – 2022. – Vol. 13. – P. 1556. – DOI: 10.1038/s41467-022-29248-x.
  39. Painter S. L, Karra S. Constitutive model for unfrozen water content in subfreezing unsaturated soils // Vadose Zone Journal. – 2014. – Vol. 13, No. 4. – DOI: 10.2136/vzj2013.04.0071.
  40. Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling / Y. Sjöberg, E. Coon, A. B. K. R. Sannel, R. Pannetier, D. Harp, A. Frampton, S. L. Painter, S. W. Lyon // Water Resources Research – 2016. – Vol. 52. – P. 1591–1606. – DOI: 10.1002/2015WR017571.
  41. Water and energy transfer modelling in a permafrost-dominated, forested catchment of Central Siberia: the key role of rooting depth / L. Orgogozo, A. S. Prokushkin, O. S. Pokrovsky, C. Grenier, M. Quintard, J. Viers, S. Audry // Permafrost and Periglacial Processes. – 2019. – Vol. 30. – P. 75–89. – DOI: 10.1002/ppp.1995.
  42. Sergeyev F., Kiselyov F. Iterative Refinement of the boundary condition in the numerical solution of the thermoelasticity problem // Lecture Notes in Civil Engineering : proceedings of FORM 2021. – Springer, Cham, 2022 / ed. by P. Akimov, N. Vatin. – 2022. – Vol. 17. – P. 329–338. – DOI: 10.1007/978-3-030-79983-0_31.

PDF      

Библиографическая ссылка на статью

Filimonov M. Y., Vaganova N. A. Some Problems of Heat and Mass Transfer During the Operation of Engineering Systems in Multiphase Environments // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 4. - P. 15-28. -
DOI: 10.17804/2410-9908.2023.4.015-028. -
URL: http://dream-journal.org/issues/content/article_398.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru