Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Stolbovsky, V. V. Popov, R. M. Falahutdinov, S. A. Murzinova

SPECIFIC FEATURES OF GRAIN STRUCTURE EVOLUTION IN HPT-NANOSTRUCTURED TIN BRONZE UNDER SUBSEQUENT HEATING

DOI: 10.17804/2410-9908.2019.6.037-047

The grain structure of tin bronze with 7.4 wt% Sn after high-pressure torsion (HPT) at room temperature and subsequent annealing is analyzed. It is demonstrated that, in Cu-7.4%Sn bronze, two groups of grains with different characteristics and different grain-boundary mobility are formed under deformation by HPT. It can be stated that the formation of two groups of grains results from different inclination of grains to relaxation due to the presence of competitive processes occurring directly under deformation. The grains of both groups evolve under heating, with increasing average crystallite size as the annealing temperature rises; however, their volume fraction depends on the defectiveness of the crystallites themselves.

Acknowledgement: The electron microscope investigation was performed on the equipment installed in Nanotechnologies and Advanced Materials Testing Center, IMP UB RAS. The study was performed under the state assignment of from FASO Russia (theme Function, No. AAAA-A19-119012990095-0) and partially supported by the Basic Research Program of UB RAS, project 18–10–2–37.

Keywords: nanostructuring, nanostructures, severe plastic deformation, high-pressure torsion, grain boundaries, thermal stability, tin bronze, statistical analysis

References:

1.  Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater., 2000, vol. 48, no. 1, pp. 1–29. DOI: 10.1016/S1359-6454(99)00285-2.

2.  Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: Fundamentals and applications, Hoboken, New Jersey, USA, TMS, Wiley, 2013, pp. 440. DOI: 10.1002/9781118742679.

3.  Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 2013, vol. 61, iss. 3, pp. 782–817. DOI: 10.1016/j.actamat.2012.10.038.

4.  Sauvage X., Wilde G., Divinski S.V., Horita Z., Valiev R.Z. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A., 2012, vol. 540, pp. 1– 12. DOI: 10.1016/j.msea.2012.01.080.

5.  Popov V.V., Sergeev A.V., Stolbovsky A.V. Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation. Physics of Metals and Metallography, 2017, vol. 118, pp. 354–361. DOI: https://doi.org/10.1134/S0031918X17040081.

6.  Stolbovskii A.V., Popova E.N. Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing. Bulletin of the Russian Academy of Sciences: Physics, 2010, vol. 74, iss. 3, pp. 388–392. DOI: 10.3103/S1062873810030159.

7.  Popov V.V., Sergeev A.V., Stolbovsky A.V. Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo. Defect and Diffusion Forum, 2015, vol. 364, pp. 147–156. DOI: 10.4028/www.scientific.net/DDF.364.147.

8.  Popov V.V., Stolbovsky A.V., Sergeev A.V., Semionkin V.A. Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation. Bulletin of the Russian Academy of Sciences: Physics, 2017, vol. 81, iss. 7, pp. 951–955. DOI: 10.3103/S106287381707022X.

9.  Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. Structure and thermal stability of Cu after severe plastic deformation. Defect and Diffusion Forum, 2010, vols. 297–301, pp. 1312–1321. DOI: 10.4028/www.scientific.net/DDF.

10. Stolbovsky A.V., Popov V.V., Popova E.N., Pilyugin V.P. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures. Bulletin of the Russian Academy of Sciences: Physics, 2014, vol. 78, iss. 9, pp. 908–916. DOI: 10.3103/S1062873814090299.

11. Pippan R., Scheriau S., Taylor A., Hafok M., Hohenwarter A., Bachmaier A. Saturation of fragmentation during severe plastic deformation. Annual Review of Materials Research, 2010, vol. 40, pp. 319–343. DOI: 10.1146/annurev-matsci-070909-104445.

12. Stolbovsky A.V., Popov V.V., Popova E.N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 118–132. DOI: 10.17804/2410-9908.2015.5.118-132. URL: http://dream-journal.org/issues/2015-5/2015-5_52.html (accessed 30.10.2017).

13. Popov V.V., Popova E.N., Stolbovsky A.V., Falahutdinov R.M. Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing. Physics of Metals and Metallography, 2018, vol. 119, pp. 358–367. DOI: 10.1134/S0031918X18040154.

14. Popov V.V., Stolbovsky A.V., Popova E.N. Structure of nickel-copper alloys subjected to high-pressure torsion to saturation stage. Physics of Metals and Metallography, 2017, vol. 118, pp. 1073–1080. DOI: https://doi.org/10.1134/S0031918X17110114.

15. Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. Structure and thermal stability of Cu after severe plastic deformation. Defect and Diffusion Forum, 2010, vol. 297–301, pp. 1312–1321. DOI: 10.4028/www.scientific.net/DDF.

16. Stolbovsky A.V., Popov V.V., Popova E.N., Pilyugin V.P. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures. Bulletin of the Russian Academy of Sciences: Physics, 2014, vol. 78, iss. 9, pp. 908–916. DOI: 10.3103/S1062873814090299.

17. Kon’kova T.N., Mironov S.Y., Korznikov A.V. Room-temperature instability of the structure of copper deformed at a cryogenic temperature. Russian Metallurgy (Metally), 2011, vol. 2011, iss. 7, pp. 689–698. DOI: 10.1134/S0036029511070081.

18. Voronova L.M., Chashchukhina T.I., Degtyarev M.V., Pilyugin V.P. Structure Evolution and Stability of Copper Deformed at 80 K. Russian Metallurgy (Metally), 2012, vol. 2012, iss. 4, pp. 303–306. DOI: 10.1134/S0036029512040131.

19. Chashchukhina T.I., Voronova L.M., Degtyarev M.V., Pokryshkina D.K. Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils. Physics of Metals and Metallography, 2011, vol. 111, iss. 3, pp. 304–313. DOI: 10.1134/S0031918X11020049.

20. Stolbovsky A., Farafontova E. Statistical analysis method of the grain structure of nanostructured single phase metal materials processed by high-pressure torsion. Sol. Stat. Phenomena, 2018, vol. 284, pp. 425–430. DOI: https://doi.org/10.4028/www.scientific.net/SSP.284.425.

21. Stolbovsky A., Farafontova E. Statistical analysis of histograms of grain size distribution in nanostructured materials processed by severe plastic deformation. Sol. Stat. Phenomena, 2018, vol. 284, pp. 431–435. DOI: https://doi.org/10.4028/www.scientific.net/SSP.284.431.

А. В. Столбовский, В. В. Попов, Р. М. Фалахутдинов, С. А. Мурзинова

ОСОБЕННОСТИ ЭВОЛЮЦИИ ЗЕРЕННОЙ СТРУКТУРЫ НАНОСТРУКТУРИРОВАННОЙ МЕТОДОМ КВД ОЛОВЯНИСТОЙ БРОНЗЫ ПРИ ПОСЛЕДУЮЩЕМ НАГРЕВЕ

Проведен анализ зеренной структуры наноструктурированной оловянистой бронзы с 7.4 мас. % Sn после деформации кручением под высоким давлением (КВД) при комнатной температуре и последующего отжига. Показано, что в оловянистой бронзе Cu-7.4%Sn при деформации формируются две группы зерен с различными характеристиками, обладающие различной подвижностью границ зерен. Можно утверждать, что формирование двух групп обусловлено различной склонностью зерен к протеканию релаксационных процессов как следствие присутствия конкурирующих процессов, проходящих непосредственно во время деформирования. При этом зерна обеих выделенных групп эволюционируют при нагреве с возрастанием среднего размера кристаллитов с повышением температуры отжига, однако их объемная доля зависит от дефектности самих кристаллитов.

Благодарность: Электронно-микроскопическое исследование выполнено на оборудовании центра коллективного пользования в Испытательном центре нанотехнологий и перспективных материалов ИФМ УрО РАН. Работа выполнена в рамках государственного задания ФАНО России (тема «Функция» номер госрегистрации АААА-А19-119012990095-0), при частичной поддержке программы фундаментальных исследований УрО РАН (проект 18–10–2–37).

Ключевые слова: наноструктурирование, наноструктуры, интенсивная пластическая деформация, кручение под высоким давлением, границы зерен, термическая стабильность, оловянистая бронза, статистический анализ

Библиография:

1.  Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta Mater. – 2000. – Vol. 48, no. 1. – P. 1–29. – DOI: 10.1016/S1359-6454(99)00285-2.

2.  Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk nanostructured materials: Fundamentals and applications. – Hoboken, New Jersey, USA : TMS, Wiley, 2013. – P. 440. – DOI: 10.1002/9781118742679.

3.  Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. – Acta Materialia. – 2013. – Vol. 61, iss. 3. – P. 782–817. – DOI: 10.1016/j.actamat.2012.10.038.

4.  Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena / X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, R. Z. Valiev // Mater. Sci. Eng. A. – 2012. – Vol. 540. – P. 1–12. – DOI: 10.1016/j.msea.2012.01.080.

5.  Popov V. V., Sergeev A. V., Stolbovsky A. V. Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation // Physics of Metals and Metallography. – 2017. – Vol. 118. – P. 354–361. – DOI: https://doi.org/10.1134/S0031918X17040081.

6.  Stolbovskii A. V., Popova E. N. Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing // Bulletin of the Russian Academy of Sciences: Physics. – 2010. – Vol. 74, iss. 3. – P. 388–392. – DOI: 10.3103/S1062873810030159.

7.  Popov V. V., Sergeev A. V., Stolbovsky A. V. Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo // Defect and Diffusion Forum. – 2015. – Vol. 364. – P. 147–156. – DOI: 10.4028/www.scientific.net/DDF.364.147.

8.  Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation / V. V. Popov, A. V. Stolbovsky, A. V. Sergeev, V. A. Semionkin // Bulletin of the Russian Academy of Sciences: Physics. – 2017. – Vol. 81, iss. 7. – P 951–955. – DOI: 10.3103/S106287381707022X.

9.  Structure and thermal stability of Cu after severe plastic deformation / V. V. Popov, A. V. Stolbovsky, E. N. Popova, V. P. Pilyugin // Defect and Diffusion Forum. – 2010. – Vols. 297–301. – P. 1312–1321. – DOI:10.4028/www.scientific.net/DDF.

10. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures / A. V. Stolbovsky, V. V. Popov, E. N. Popova, V. P. Pilyugin // Bulletin of the Russian Academy of Sciences: Physics. – 2014. – Vol. 78, iss. 9. – P. 908–916. – DOI: 10.3103/S1062873814090299.

11. Saturation of fragmentation during severe plastic deformation / R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier // Annual Review of Materials Research. – 2010. – Vol. 40. – P. 319–343. – DOI: 10.1146/annurev-matsci-070909-104445.

12. Stolbovsky A. V., Popov V. V., Popova E. N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 118–132. – DOI: 10.17804/2410-9908.2015.5.118-132. – URL: http://dream-journal.org/issues/2015-5/2015-5_52.html (accessed 30.10.2017).

13. Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing / V. V. Popov, E. N. Popova, A. V. Stolbovsky, R. M. Falahutdinov // Physics of Metals and Metallography. – 2018. – Vol. 119. – P. 358–367. – DOI: 10.1134/S0031918X18040154.

14. Popov V. V., Stolbovsky A. V., Popova E. N. Structure of nickel-copper alloys subjected to high-pressure torsion to saturation stage // Physics of Metals and Metallography. – 2017. – Vol. 118. – P. 1073–1080. – DOI: 10.1134/S0031918X17110114.

15. Structure and thermal stability of Cu after severe plastic deformation / V. V. Popov, A. V. Stolbovsky, E. N. Popova, V. P. Pilyugin // Defect and Diffusion Forum. – 2010. – Vol. 297–301. – P. 1312–1321. – DOI: 10.4028/www.scientific.net/DDF.

16. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures / A. V. Stolbovsky, V. V. Popov, E. N. Popova, V. P. Pilyugin // Bulletin of the Russian Academy of Sciences: Physics. – 2014. – Vol. 78, iss. 9. – P. 908–916. – DOI: 10.3103/S1062873814090299.

17. Kon’kova T. N., Mironov S. Y., Korznikov A. V. Room-temperature instability of the structure of copper deformed at a cryogenic temperature // Russian metallurgy (Metally). – 2011. – Vol. 2011, iss. 7. – P. 689–698. – DOI: 10.1134/S0036029511070081.

18. Structure Evolution and Stability of Copper Deformed at 80 K / L. M. Voronova, T. I. Chashchukhina, M. V. Degtyarev, V. P. Pilyugin // Russian Metallurgy (Metally). – 2012. – Vol. 2012, iss. 4. – P. 303–306. – DOI: 10.1134/S0036029512040131.

19. Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils / T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, D. K. Pokryshkina // Physics of Metals and Metallography. – 2011. – Vol. 111, iss. 3. – P. 304–313. – DOI: 10.1134/S0031918X11020049.

20. Stolbovsky A., Farafontova E. Statistical analysis method of the grain structure of nanostructured single phase metal materials processed by high-pressure torsion // Sol. Stat. Phenomena. – 2018. – Vol. 284. – P. 425–430. – DOI: https://doi.org/10.4028/www.scientific.net/SSP.284.425.

21. Stolbovsky A., Farafontova E. Statistical analysis of histograms of grain size distribution in nanostructured materials processed by severe plastic deformation // Sol. Stat. Phenomena. – 2018. – Vol. 284. – P. 431–435. – DOI: https://doi.org/10.4028/www.scientific.net/SSP.284.431.

PDF      

Библиографическая ссылка на статью

Specific Features of Grain Structure Evolution in Hpt-Nanostructured Tin Bronze under Subsequent Heating / A. V. Stolbovsky, V. V. Popov, R. M. Falahutdinov, S. A. Murzinova // Diagnostics, Resource and Mechanics of materials and structures. - 2019. - Iss. 6. - P. 37-47. -
DOI: 10.17804/2410-9908.2019.6.037-047. -
URL: http://dream-journal.org/issues/content/article_280.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru