Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2021 Выпуск 6

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Chumaevsky, A. O. Panfilov, E. O. Knyazhev, A. P. Zykova, A. V. Gusarova, K. N. Kalashnikov, A. V. Vorontsov, N. L. Savchenko, S.Y. Nikonov, A. M. Cheremnov, V. E. Rubtsov, E. A. Kolubaev

PRODUCTION OF GRADIENT INTERMETALLIC LAYERS BASED ON ALUMINUM ALLOY AND COPPER BY ELECTRON–BEAM ADDITIVE TECHNOLOGY

DOI: 10.17804/2410-9908.2021.6.019-031

This study presents the results of experimental work on the production and examination of samples of laminated polymetallic products made by wire-feed electron-beam additive technology using the technique of controlled filament feeding into the melt bath. The structure of the products based on M1 copper and AMg5 aluminum alloy combines metallic and intermetallic layers with the presence of a gradient transition between the phases. Inside the layers with a transition structure the distribution of intermetallic phases can be of different types. The microhardness values of the different structural constituents of the samples differ by more than a factor of 16. The mechanical properties of the material of the transition layers are characterized by low strength and low plasticity. In the structure of the intermetallic layers and at the boundary between them the formation of defects in the form of cracks and delaminations is observed.

Acknowledgements: The work was performed according to the Government research assignment for the ISPMS SB RAS, project FWRW-2021-0012.

Keywords: electron-beam additive technology, intermetallic composites, polymetals, gradient structures

Bibliography:

  1. Ghanavati R., Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies. Journal of Materials Research and Technology, 2021, vol. 13, pp. 1628–1664. DOI: 10.1016/j.jmrt.2021.05.022.
  2. Panfilov A.O., Knyazhev E.O., Kalashnikova T.A., Kalashnikov Kirill. Manufacturing of Cu-Ni and Fe-Cu-Ni polymetallic materials by the electron-beam additive technology. AIP Conference Proceedings, 2020, vol. 2310, pp. 020242. DOI: 10.1063/5.0034751.
  3. Gurianov D.A., Kalashnikov K.N., Gusarova A.V., Chumaevskii Andrey V. Obtaining of the polymetallic samples from Ti-Al and Ti-Cu systems by the electron beam additive manufacturing method. AIP Conference Proceedings, 2019, vol. 2167, pp. 020126. DOI: 10.1063/1.5131993.
  4. Chumaevskii Andrey V., Kalashnikov Kirill, Vorontsov Andrey, Zykova Anna. Evolution of microstructure and properties of Fe-Cu, manufactured by electron beam additive manufacturing with subsequent friction stir processing. Materials Letters, 2022, vol. 307, pp. 131023. DOI: 10.1016/j.matlet.2021.131023.
  5. Fernandez-Zelaia Patxi, Ledford Christopher, Ellis Elizabeth A.I., Campbell Quinn. Crystallographic texture evolution in electron beam melting additive manufacturing of pure Molybdenum. Materials & Design, 2021, vol. 207, pp. 109809. DOI: 10.1016/j.matdes.2021.109809.
  6. Afkhami S., Dabiri M., Habib Alavi S., Timo Björk. Fatigue characteristics of steels manufactured by selective laser melting. International Journal of Fatigue, 2019, vol. 122, pp. 72–83. DOI: 10.1016/j.ijfatigue.2018.12.029.
  7. Schopphoven T., Pirch N., Mann S. Statistical/Numerical Model of the Powder-Gas Jet for Extreme High-Speed Laser Material Deposition. Coatings, 2020, vol. 10, pp. 416. DOI: 10.3390/coatings10040416.
  8. Zhang G., Xiong H., Yu H., Qin R.Y. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments. Materials & Design, 2020, vol. 195, pp. 109063. DOI: 10.1016/j.matdes.2020.109063.
  9. Xu Junqiang, Zhou Qi, Kong Jian, Peng Yong, Guo Shun, Zhu Jun, Fan Jikang. Solidification behavior and microstructure of Ti-(37−52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication. Additive Manufacturing, 2020, vol. 46, pp. 102113. DOI: 10.1016/j.addma.2021.102113.
  10. Osipovich Kseniya, Chumaevskii Andrey V., Gusarova Anastasiya V., Kalashnikov Kirill. Mechanical properties of steel-copper polymetal manufactured by the wire-feed electron-beam additive technology. High Temperature Material Processes, 2020, vol. 24, pp. 91–98.  DOI: 10.1615/HighTempMatProc.2020033790.

А. В. Чумаевский, А. О. Панфилов, Е. О. Княжев, А. П. Зыкова, А. В. Гусарова, К. Н. Калашников, А. В. Воронцов, Н. Л. Савченко, С. Ю. Никонов, А. М. Черемнов, В. Е. Рубцов, Е. А. Колубаев

ПОЛУЧЕНИЕ ГРАДИЕНТНЫХ ИНТЕРМЕТАЛЛИДНЫХ СЛОЕВ НА ОСНОВЕ АЛЮМИНИЕВОГО СПЛАВА И МЕДИ МЕТОДОМ ЭЛЕКТРОННО–ЛУЧЕВОЙ АДДИТИВНОЙ ТЕХНОЛОГИИ

В работе приведены результаты экспериментальной работы по получению и исследованию образцов полиметаллических слоистых изделий, полученных методом проволочной аддитивной электронно-лучевой технологии с использованием методики управляемой подачи филамента в ванну расплава. Полученные изделия на основе меди марки М1 и алюминиевого сплава АМг5 сочетают в структуре металлические и интерметаллидные слои с наличием градиентного перехода между фазами. Микротвердость различных структурных составляющих образцов отличаются на величину более чем в 16 раз. Механические свойства материала переходных слоёв характеризуются невысокими значениями прочности и низкой пластичностью. В структуре интерметаллидных слоёв и на границе между ними наблюдается формирование дефектов в виде трещин и расслоений.

Благодарности: Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2021-0012

Ключевые слова: электронно-лучевая аддитивная технология, интерметаллидные композиционные материалы, полиметаллы, градиентные структуры

Библиография:

  1. Ghanavati R., Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies // Journal of Materials Research and Technology. – 2021. – Vol. 13. – P. 1628–1664. – DOI: 10.1016/j.jmrt.2021.05.022.
  2. Manufacturing of Cu-Ni and Fe-Cu-Ni polymetallic materials by the electron-beam additive technology / A. O. Panfilov, E. O. Knyazhev, T. A. Kalashnikova, Kirill Kalashnikov // AIP Conference Proceedings. – 2020. – Vol. 2310. – P. 020242. – DOI: 10.1063/5.0034751.
  3. Obtaining of the polymetallic samples from Ti-Al and Ti-Cu systems by the electron beam additive manufacturing method / D. A. Gurianov, K. N. Kalashnikov, A. V. Gusarova, Andrey V. Chumaevskii // AIP Conference Proceedings. – 2019. – Vol. 2167. – P. 020126 – DOI: 10.1063/1.5131993.
  4. Evolution of microstructure and properties of Fe-Cu, manufactured by electron beam additive manufacturing with subsequent friction stir processing / Andrey V. Chumaevskii, Kirill Kalashnikov, Andrey Vorontsov, Anna Zykova // Materials Letters. – 2022. – Vol. 307. – P. 131023. – DOI: 10.1016/j.matlet.2021.131023.
  5. Crystallographic texture evolution in electron beam melting additive manufacturing of pure Molybdenum / Patxi Fernandez-Zelaia, Christopher Ledford, Elizabeth A.I. Ellis, Quinn Campbell // Materials & Design. – 2021. – Vol. 207. – P. 109809. – DOI: 10.1016/j.matdes.2021.109809.
  6. Fatigue characteristics of steels manufactured by selective laser melting / S. Afkhami, M. Dabiri, S. Habib Alavi, Björk Timo // International Journal of Fatigue. – 2019. – Vol. 122. – P. 72–83. – DOI: 10.1016/j.ijfatigue.2018.12.029.
  7. Schopphoven T., Pirch N., Mann S. Statistical/Numerical Model of the Powder-Gas Jet for Extreme High-Speed Laser Material Deposition // Coatings. – 2020. – Vol. 10. – P. 416. – DOI: 10.3390/coatings10040416.
  8. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments / G. Zhang, H. Xiong, H. Yu, R. Y. Qin // Materials & Design. – 2020. – Vol. 195. – P. 109063. – DOI: 10.1016/j.matdes.2020.109063.
  9. Solidification behavior and microstructure of Ti-(37−52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication / Junqiang Xu, Qi Zhou, Jian Kong, Yong Peng, Shun Guo, Jun Zhu, Jikang Fan // Additive Manufacturing. – 2020. – Vol. 46. – P. 102113. – DOI: 10.1016/j.addma.2021.102113.
  10. Mechanical properties of steel-copper polymetal manufactured by the wire-feed electron-beam additive technology / Kseniya Osipovich, Andrey V. Chumaevskii, Anastasiya V. Gusarova, Kirill Kalashnikov // High Temperature Material Processes. – 2020. – Vol. 24. – P. 91–98. – DOI: 10.1615/HighTempMatProc.2020033790.


PDF      

Библиографическая ссылка на статью

Production of Gradient Intermetallic Layers Based on Aluminum Alloy and Copper by Electron–beam Additive Technology / A. V. Chumaevsky, A. O. Panfilov, E. O. Knyazhev, A. P. Zykova, A. V. Gusarova, K. N. Kalashnikov, A. V. Vorontsov, N. L. Savchenko, S.Y. Nikonov, A. M. Cheremnov, V. E. Rubtsov, E. A. Kolubaev // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 6. - P. 19-31. -
DOI: 10.17804/2410-9908.2021.6.019-031. -
URL: http://dream-journal.org/issues/2021-6/2021-6_342.html
(accessed: 28.03.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru