Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2021 Выпуск 4

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. V. Chebodaeva, M. B. Sedelnikova, O. V. Bakina, Yu. P. Sharkeev

ELEMENTAL COMPOSITION OF CALCIUM PHOSPHATE COATINGS MODIFIED WITH Fe-Cu NANOPARTICLES

DOI: 10.17804/2410-9908.2021.4.015-022

The object of research is calcium-phosphate coatings doped with Fe-Cu nanoparticles. The elemental composition of the calcium-phosphate (CаP) coatings deposited by the microarc oxidation (MAO) method at a voltage of 250 V is studied. The quantitative content and distribution of Ca, P, O, Ti, Fe, and Cu over the coating surface prove to depend on the introduced additional electrolyte components. After modification with Fe-Cu nanoparticles, the Ca content increases from 4.5 to 6.7 at.%. The amount of P and Ti after the introduction of nanoparticles increases from 11.7 to 22.3 at.% and from 7.9 to 15.8 at.%. Oxygen concentration, on the contrary, decreases from 75.9 to 55.0 at.%.

Acknowledgements: The work was performed within the state assignment to the ISPMS SB RAS, project FWRW-2021-0007.

Keywords: calcium-phosphate coatings, hydroxyapatite, Fe-Cu nanocomposite particles, nanoparticles, microarc oxidation

Bibliography:

  1. Sharkeev Y.P., Psakhie S.G., Legostaeva E.V., Knyazeva A.G., Smolin A.Y., Eroshenko A.Y., Konovalenko I.S., Nazarenko N.N., Belyavskaya O.A., Kulyashova K.S., Komarova E.G., Tolkacheva T.V., Khlusov I.A., Zaitsev K.V., Khlusova M.Y., Polenichkin V.K., Sergienko V.I., Gnedenkov S.V., Sinebryukhov S.L., Puz’ A.V., Khrisanfova O.A., Egorkin V.S., Zavidnaya A.G., Terleeva O.P., Mironov I.V., Slonova A.I., Lyamina G.V., Fortuna S.V., Yakovlev V.I., Kulakov A.A., Gvetadze R.S., Khamraev T.K., Abramian S.V. Biokompozity na osnove kaltsiyfosfatnykh pokrytiy, nanostrukturnykh i ultramelkozernistykh bioinertnykh metallov, ikh biosovmestimost i biodegradatsiya [Biocomposites based on calcium-phosphate coatings, nanostructured and ultrafine-grained bioinert metals, their biocompatibility and biodegradation]. Tomsk, Izdatelskiy Dom Tomskogo Gosudarstvennogo Universiteta Publ., 2014, 596 p. (In Russian).
  2. Li J., Qin L., Yang K., Ma Z., Wang Y., Cheng L., Zhao D. Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science & Technology, 2020, vol. 36, pp. 190–208. DOI: 10.1016/j.jmst.2019.07.024.
  3. Mouriño V., Cattalini J.P, Roether J.A, Dubey P., Roy I., Boccaccini A.R. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opinion on Drug Delivery, 2013, vol. 10 (10), pp. 1353–1365. DOI: 10.1517/17425247.2013.808183.
  4. Sedelnikova M.B., Ugodchikova A.V., Uvarkin P.V., Chebodaeva V.V., Tolkacheva T.V., Schmidt D., Sharkeyev Yu.P. Structural, morphological and adhesive properties of calcium phosphate coatings formed on magnesium alloy by micro-arc oxidation method in electrolyte containing dispersed particles. Russian Physics Journal, 2021. DOI: 10.1007/s11182-021-02398-z.
  5. Sedelnikova M.B., Ugodchikova A.V., Tolkacheva T.V., Chebodaeva V.V., Cluklhov I.A., Khimich M.A., Bakina O.V., Lerner M.I., Egorkin V.S., Schmidt J., Sharkeev Y.P. Surface modification of Mg0.8Ca alloy via wollastonite micro-arc coatings: Significant improvement in corrosion resistance. Metals, 2021, vol. 11 (5), 754. DOI: 10.3390/met11050754.
  6. Karbowniczek J., Muhaffel F., Cempura G., Cimenoglu H., Czyrska-Filemonowicz A. Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy. Surface and Coatings Technology, 2017, vol. 321, pp. 97–107. DOI: 10.1016/j.surfcoat.2017.04.031.
  7. Simchen F., Sieber M., Kopp A., Lampke T. Introduction to plasma electrolytic oxidation—an overview of the process and applications. Coatings, 2020, vol. 628 (10). DOI: 10.3390/coatings10070628.
  8. Dorozhkin S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Materials Science and Engineering C, 2015, vol. 55, pp. 272–326. DOI: 10.1016/j.msec.2015.05.033.
  9. Khan R.H.U., Yerokhin A.L., Li X., Dong H., Matthews A. Influence of current density and electrolyte concentration on DC PEO titania coatings. Surface Engineering, 2014, vol. 30 (2), pp. 102–108. DOI: 10.1179/1743294413Y.0000000225.
  10. Chebodaeva V.V., Nazarenko N.N., Sedelnikova M.B., Gnedenkov S.V., Egorkin V.S., Sinebryukhov S.L., and Sharkeev Yu.P. Effect of Boehmite Nanoparticles on the Structural, Corrosion, and Diffusion Properties of Micro-arc Biocoatings. Inorganic Materials: Applied Research, 2021, vol. 12, No. 3, pp. 691–699. DOI: 10.1134/S2075113321030072.
  11. Chebodaeva V., Sedelnikova M., Bazhanova V., Lerner M., Pervikov A., Sharkeev Yu. Influence of Metal Based Nanoparticles on Properties of Micro-arc Calcium Phosphate Coatings. AIP Conference Proceedings, 2019, vol. 2167, pp. 020049-1–020049-4. DOI: 10.1063/1.5131916.
  12. Lozhkomoev A.S., Pervikov A.V., Chumaevsky A.V., Dvilis E.S., Paygin V.D., Khasanov O.L., Lerner M.I. Fabrication of Fe-Cu composites from electroexplosive bimetallic nanoparticles by spark plasma sintering. Vacuum, 2019, vol. 170, pp. 108980. DOI: 10.1016/j.vacuum.2019.108980.
  13. Mueller P.P., May T., Perz A., Hauser H., Peuster M. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 2006, 27, pp. 2193–2200. DOI: 10.1016/j.biomaterials.2005.10.042.
  14. Lozhkomoev A.S., Pervikov A.V., Chumaevsky A.V., Dvilis E.S., Paygin V.D., Khasanov O.L., Lerner M.I. Fabrication of Fe-Cu composites from electroexplosive bimetallic nanoparticles by spark plasma sintering. Vacuum, 2019, vol. 170, pp. 108980. DOI: 10.1016/j.vacuum.2019.108980.

В. В. Чебодаева, М. Б. Седельникова, О. В. Бакина, Ю. П. Шаркеев

ЭЛЕМЕНТНЫЙ СОСТАВ КАЛЬЦИЙ-ФОСФАТНЫХ ПОКРЫТИЙ МОДИФИЦИ-РОВАННЫХ НАНОЧАСТИЦАМИ Fe-Cu

Объект исследования – кальций-фосфатные покрытия с введенными в их состав наночастицами Fe-Cu. Проведено исследование элементного состава и распределения элементов кальций-фосфатных (КФ) покрытий, нанесенных методом микродугового окисления (МДО). Установлено, что количественное содержание и распределение элементов Ca, P, O, Ti, Fe и Cu в поверхностном слое покрытия существенно зависит от введенных дополнительных компонентов электролита. После модификации наночастицами Fe-Cu содержание Ca увеличивается от 4,5 до 6,7 ат. %, а количество P и Ti увеличивается от 11,7 до 22,3 ат. % и от 7,9 до 15,8 ат. % соответственно. При этом концентрация кислорода уменьшается от 75,9 до 55,0 ат. %. Показано, что такое поведение элементов в покрытии определяется участием ионов металлов Fe3+ и Cu2+ во время осаждения покрытия, способствующих интенсификации процессов МДО.

Благодарности: Работа выполнена в рамках государственного задания ИФПМ СО РАН, проект FWRW-2021-0007.

Ключевые слова: кальций-фосфатные покрытия, гидроксиапатит, нанокомпозитные частицы Fe-Cu, наноча-стицы, микродуговое оксидирование

Библиография:

  1. Биокомпозиты на основе кальцийфосфатных покрытий, наноструктурных и ультрамелкозернистых биоинертных металлов, их биосовместимость и биодеградация / Ю. П. Шаркеев, С. Г. Псахье, Е. В. Легостаева, А. Г. Князева, А. Ю. Смолин, А. Ю. Ерошенко и др. – Томск : Издательский Дом Томского государственного университета, 2014. – 596 с.
  2. Materials evolution of bone plates for internal fixation of bone fractures: A review / J. Li, L. Qin, K. Yang, Z. Ma, Y. Wang, L. Cheng, D. Zhao // Journal of Materials Science & Technology. – 2020. – Vol. 36. – P. 190–208. – DOI: 10.1016/j.jmst.2019.07.024.
  3. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering / V. Mouriño, J. P. Cattalini, J. A. Roether, P. Dubey, I. Roy, A. R. Boccaccini // Expert Opinion on Drug Delivery. – 2013. – Vol. 10 (10). – P. 1353–1365. – DOI: 10.1517/17425247.2013.808183.
  4. Structural, morphological and adhesive properties of calcium phosphate coatings formed on magnesium alloy by micro-arc oxidation method in electrolyte containing dispersed particles / M. B. Sedelnikova, A. V. Ugodchikova, P. V. Uvarkin, V. V. Chebodaeva, T. V. Tolkacheva, D. Schmidt, Yu. P. Sharkeev // Russian Physics Journal. – 2021. – DOI: 10.1007/s11182-021-02398-z.
  5. Surface modification of Mg0.8Ca alloy via wollastonite micro-arc coatings: Significant improvement in corrosion resistance / M. B. Sedelnikova, A. V. Ugodchikova, T. V. Tolkacheva, V. V. Chebodaeva, I. A. Cluklhov, M. A. Khimich, O. V. Bakina, M. I. Lerner, V. S. Egorkin, J. Schmidt, Y. P. Sharkeev // Metals. – 2021. – Vol. 11 (5). – 754. – DOI: 10.3390/met11050754.
  6. Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy / J. Karbowniczek, F. Muhaffel, G. Cempura, H. Cimenoglu, A. Czyrska-Filemonowicz // Surface and Coatings Technology. – 2017. – Vol. 321. – P. 97–107. – DOI: 10.1016/j.surfcoat.2017.04.031.
  7. Introduction to plasma electrolytic oxidation—an overview of the process and applications / F. Simchen, M. Sieber, A. Kopp, T. Lampke // Coatings. – 2020. – Vol. 628 (10). – DOI: 10.3390/coatings10070628.
  8. Dorozhkin S. V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications // Materials Science and Engineering C. – 2015. – Vol. 55. – P. 272–326. – DOI: 10.1016/j.msec.2015.05.033.
  9. Influence of current density and electrolyte concentration on DC PEO titania coatings / R. H. U. Khan, A. L. Yerokhin, X. Li, H. Dong, A. Matthews // Surface Engineering. – 2014. – Vol. 30 (2). – P. 102–108. – DOI: 10.1179/1743294413Y.0000000225.
  10. Effect of Boehmite Nanoparticles on the Structural, Corrosion, and Diffusion Properties of Microarc Biocoatings / V. V. Chebodaeva, N. N. Nazarenko, M. B. Sedelnikova, S. V. Gnedenkov, V. S. Egorkin, S. L. Sinebryukhov, and Yu. P. Sharkeev // Inorganic Materials: Applied Research. – 2021. – Vol. 12, No. 3. – P. 691–699. – DOI: 10.1134/S2075113321030072.
  11. Influence of Metal Based Nanoparticles on Properties of Micro-arc Calcium Phosphate Coatings / V. Chebodaeva, M. Sedelnikova, V. Bazhanova, M. Lerner, A. Pervikov, Yu. Sharkeev // AIP Conference proceedings – 2019. – Vol. 2167. – P. 020049-1–020049-4. – DOI: 10.1063/1.5131916.
  12. Fabrication of Fe-Cu composites from electroexplosive bimetallic nanoparticles by spark plasma sintering / A. S. Lozhkomoev, A. V. Pervikov, A. V. Chumaevsky, E. S. Dvilis, V. D. Paygin, O. L. Khasanov, M. I. Lerner // Vacuum. – 2019. – Vol. 170. – 108980. – DOI: 10.1016/j.vacuum.2019.108980.
  13. Control of smooth muscle cell proliferation by ferrous iron / P. P. Mueller, T. May, A. Perz, H. Hauser, M. Peuster // Biomaterials. – 2006. – Vol. 27. – P. 2193–2200. – DOI: 10.1016/j.biomaterials.2005.10.042.
  14. Fabrication of Fe-Cu composites from electroexplosive bimetallic nanoparticles by spark plasma sintering / A. S. Lozhkomoev, A. V. Pervikov, A. V. Chumaevsky, E. S. Dvilis, V. D. Paygin, O. L. Khasanov, M. I. Lerner // Vacuum. – 2019. – Vol. 170. – P. 108980. – DOI: 10.1016/j.vacuum.2019.108980.

PDF      

Библиографическая ссылка на статью

Elemental Composition of Calcium Phosphate Coatings Modified with Fe-Cu Nanoparticles / V. V. Chebodaeva, M. B. Sedelnikova, O. V. Bakina, Yu. P. Sharkeev // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 4. - P. 15-22. -
DOI: 10.17804/2410-9908.2021.4.015-022. -
URL: http://dream-journal.org/issues/2021-4/2021-4_333.html
(accessed: 19.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru