Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2021 Выпуск 1

Все выпуски
 
2024 Выпуск 6
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Stolbovsky, V. V. Popov, R. M. Falahutdinov, S. A. Murzinova

EVOLUTION OF THE STRUCTURE OF ANNEALED HAFNIUM BRONZE NANOSTRUCTURED BY HIGH PRESSURE TORSION

DOI: 10.17804/2410-9908.2021.1.038-050

The effect of severe plastic deformation by 1, 3 and 5 revolutions of high pressure torsion (HPT) on the structure and mechanical properties of low-alloyed hafnium bronze Cu–0.78wt%Hf is studied. In the initial annealed state, hafnium is almost completely bonded into intermetallic compounds. It has been found that the structure of all the investigated bronze specimens subjected to HPT is stable and that it remains unchanged after unloading and prolonged ageing at room temperature. It is shown that all the specimens develop a dispersed submicrocrystalline structure gradient along the radius of the disk, with an average crystallite size of 200 nm after 1 revolution to 120 nm after 5 revolutions (at mid-radius). The structure is non-uniform even after 5 revolutions, this being confirmed by microhardness measurements. The high-pressure-torsion behavior of hafnium bronze with Hf bonded into precipitates has much in common with the behavior of pure copper. At the same time, in terms of the stability of the obtained structures at room temperature, the behavior of the alloy under study demonstrates much in common with that of low-alloyed tin bronze.

Acknowledgement: The electron microscopic study used the equipment of the Collaborative Access Center at the Testing Center of Nanotechnologies and Advanced Materials, IMP UB RAS. The work was performed under the state assignment from FASO Russia (theme Function, registration number AAAA-A19-119012990095-0) and partially supported by the UB RAS Basic Research Program, project 18–10–2–37.

Keywords: severe plastic deformation, high-pressure torsion, nanostructuring, nanostructures, grain boundaries, hafnium bronze

References:

  1. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Applications, New Jersey, TMS, Wiley, Hoboken, 2014, 440 p. ISBN 978-1-118-09540-9.
  2. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater., 2000, vol. 48, pp. 1–29. DOI: 10.1016/S1359-6454(99)00285-2.
  3. Wang Y.M., Chen M.W., Sheng H.W., Ma E. Nanocrystalline grain structures developed in commercial purity Cu by low temperature cold rolling. Mater. Res. Soc., 2002, vol. 17, no. 12, pp. 3004–3007. DOI: 10.1557/JMR.2002.0436.
  4. Gertsman V.Y., Birringer R., Valiev R.Z., Gleiter H. On the structure and strength of ultra-fine-grained copper produced by severe plastic deformation. Scr. Met. & Mater., 1994., vol. 30, no. 2, pp. 229–234. DOI: 10.1016/0956-716X(94)90045-0.
  5. Erbel S. Mechanical properties and structure of extremely strainhardened copper. Metals Technol., 1979, vol. 6, no. 1, pp. 482–486. DOI: 10.1179/030716979803276363.
  6. Liao X.Z., Zhao Y.H., Zhu Y.T. Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys., 2004, vol. 96, no. 1, pр. 636–640. DOI: 10.1063/1.1757035.
  7. Dalla Torre F., Lapovok R., Sandlin J., Thomson P.F., Davies C.H.J., Pereloma E.V. Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater., 2004, vol. 52, no. 16, pp. 4819–4832. DOI: 10.1016/j.actamat.2004.06.040.
  8. Valiev R.Z., Kozlov E.V., Ivanov Yu.F., Lian J., Nazarov A.A., Baudel B. Deformation behavior of ultra-fine-grained copper, Acta Met. & Mater., 1994, vol. 42, no. 7, pp. 2467–2475. DOI: 10.1016/0956-7151(94)90326-3.
  9. Alexandrov I.V., Dubravina A.A., Kim H.S. Nanostructure formation in copper subjected to high pressure torsion. Defect & Diffus. Forum, 2002, vol. 208–209, pp. 229–232. DOI: 10.4028/www.scientific.net/DDF.208-209.229.
  10. Brandstetter S., Zhang K., Escuadro A., Weertman Julia. Grain coarsening during compression of bulk nanocrystalline nickel and copper. Scr. Mater., 2008, vol. 58, no. 1, pp. 61–64. DOI: 10.1016/j.scriptamat.2007.08.042.
  11. Horita Z., Langdon T.G. Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater. Sci. & Eng. A., 2005, vol. 410–411, pp. 422–425. DOI: 10.1016/j.scriptamat.2007.08.042.
  12. Islamgaliev R.K., Chmelik F., Kuzel R. Thermal stability of submicron grained copper and nickel. Mater. Sci. & Eng. A., 1997, vol. 237, no. 1, pp. 43–51. DOI: 10.1016/S0921-5093(97)00107-X.
  13. Akhmadeev N.H., Kobelev N.P., Mulyukov R.R. The effect of heat treatment on the elastic and dissipative properties of copper with the submicrocrystalline structure. Acta Met. & Mater., 1993, vol. 41, no. 4, pp. 1041–1046. DOI: 10.1016/0956-7151(93)90153-J.
  14. Popov V.V., Stolbovskiy A.V., Popova E.N., Pilyugin V.P. Structure and Thermal Stability of Cu after Severe Plastic Deformation. Defect and Diffusion Forum, 2010, vol. 297–301, pp. 1312—1321. DOI: 10.4028/www.scientific.net/DDF.297-301.1312.
  15. Stolbovsky A.V., Popov V.V., Popova E.N., Pilyugin V.P. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures. Bulletin of the Russian Academy of Sciences: Physics, 2014, vol. 78, pp. 908–916. DOI: 10.3103/S1062873814090299.
  16. Stolbovsky A.V., Popov V.V., Popova E.N., Falakhutdinov R.M. Effect of severe plastic deformation by high-pressure torsion on the structure and properties of copper and tin bronze. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 5, pp. 13–22. DOI: 10.17804/2410-9908.2017.5.013-022. Availabke at: http://dream-journal.org/issues/2017-5/2017-5_144.html (accessed: 19.02.2021)
  17. Shangina D.V., Bochvar N.R., Dobatkin S.V. Structure and properties of ultrafine–grained Cu–Cr alloys after high pressure torsion. Materials Science Forum, 2011, vol. 667–669, pp. 301–306. DOI: 10.4028/www.scientific.net/MSF.667-669.301.
  18. Shangina D.V., Bochvar N.R., Dobatkin S.V. The effect of alloying with hafnium on the thermal stability of chromium bronze after severe plastic deformation. Journal of Materials Science, 2012, vol. 47, pp. 7764–7769. DOI: 10.1007/s10853-012-6525-9.
  19. Shangina D.V., Maksimenkova Yu.M., Bochvar N.R., Serebryany Vl., Raab G., Vinogradov A., Skrotzki Werner, Dobatkin S. Structure and properties of Cu alloys alloying with Cr and Hf after equal channel angular pressing. Advanced Materials Research, 2014, vol. 922, pp. 651–656. DOI: 10.4028/www.scientific.net/AMR.922.651.
  20. Dobatkin S.V., Shangina D.V., Bochvar N.R., Janečekc Miloš. Effect of deformation schedules and initial states on structure and properties of Cu–0.18%Zr alloy after high–pressure torsion and heating. Materials Science and Engineering A, 2014, vol. 598, pp. 288–292. DOI: 10.1016/j.msea.2013.12.104.
  21. Shangina D.V., Gubicza J., Dodony E., Bochvar N.R., Straumal P.B., Tabachkova N.Yu. & Dobatkin S.V. Improvement of strength and conductivity in Cu–alloys with the application of high–pressure torsion and subsequent heat-treatments. Journal of Materials Science, 2014, vol. 49, pp. 6674–6681. DOI: 10.1007/s10853-014-8339-4.
  22. Dobatkin S.V., Gubicza J., Shangina D.V., Bochvara N.R., Tabachkova N.Y. High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation. Materials Letters, 2015, vol. 153, pp. 5–9. DOI: doi.org/10.1016/j.matlet.2015.03.144.
  23. Dobatkin S.V., Bochvar N.R., Shangina D.V. Aging processes in ultrafine-grained low-alloyed bronzes subjected to equal channel angular pressing. Advanced Engineering Materials, 2015, vol. 17, pp. 1862–1868. DOI: 10.1002/adem.201500099.
  24. Shangina D.V., Bochvar N.R., Gorshenkov M.V., Yanar H., Purcek G., Dobatkin S.V. Influence of microalloying with zirconium on the structure and properties of Cu–Cr alloy after high pressure torsion. Materials Science and Engineering A, 2016, vol. 650, pp. 63–66. DOI: 10.1016/j.msea.2015.10.008.
  25. Purcek G., Yanar H., Demirtas M., Alemdag Y., Shangina D.V., Dobatkin S.V. Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging. Materials Science and Engineering A., 2016, vol. 649, pp. 114–122. DOI: 10.1016/j.msea.2015.09.111.
  26. Shangina D., Maksimenkova Yu., Bochvar N., Serebryany Vl., Raab Georgy, Vinogradov A., Skrotzki Werner & Dobatkin S. Influence of alloying with hafnium on the microstructure, texture, and properties of Cu–Cr alloy after equal channel angular pressing. Journal of Materials Science, 2016, vol. 51, pp. 5493– 5501. DOI: 10.1007/s10853-016-9854-2.
  27. Stolbovsky A.V., Popov V.V., Popova E.N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 118–132. DOI: 10.17804/2410-9908.2015.5.118-132. Available at: http://dream-journal.org/issues/2015-5/2015-5_52.html (accessed: 27.06.2020).
  28. Popov V.V., Popova E.N., Stolbovsky A.V., Falakhutdinov R.M. Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing. Physics of Metals and Metallography, 2018, vol. 119, pp. 358–367. DOI: 10.1134/S0031918X18040154.

А. В. Столбовский, В. В. Попов, Р. М. Фалахутдинов, С. А. Мурзинова

ЭВОЛЮЦИЯ СТРУКТУРЫ ОТОЖЖЕННОЙ ГАФНИЕВОЙ БРОНЗЫ, НАНОСТРУКТУРИРОВАННОЙ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ

Исследовано влияние интенсивной пластической деформации кручением под высоким давлением (КВД) на 1, 3 и 5 об. на структуру и механические свойства низколегированной гафниевой бронзы Cu–0,78 мас. % Hf. В исходном отожженном состоянии гафний практически полностью связан в интерметаллические выделения. Установлено, что структура всех исследованных образцов бронзы, подвергнутых КВД, стабильна и не претерпевает каких-либо изменений после снятия нагрузки и при длительном вылеживании. Показано, что во всех исследованных образцах формируется дисперсная субмикрокристаллическая структура, градиентная по радиусу диска, со средним размером кристаллитов от 200 нм после 1 об. до 120 нм после 5 об. (на середине радиуса). Даже после 5 об. структура является неоднородной, что подтверждается измерениями микротвердости. Поведение при кручении под высоким давлением гафниевой бронзы со связанным в выделения гафнием имеет много общего с поведением чистой меди. В то же время с точки зрения стабильности полученных структур при комнатной температуре поведение рассматриваемого сплава демонстрирует много общего с поведением, наблюдавшимся у низколегированной оловянистой бронзы.

Благодарность: Электронно-микроскопическое исследование выполнено на оборудовании центра кол-лективного пользования в Испытательном центре нанотехнологий и перспективных мате-риалов ИФМ УрО РАН. Работа выполнена в рамках государственного задания ФАНО России (тема «Функ-ция» номер госрегистрации АААА-А19-119012990095-0) при частичной поддержке програм-мы фундаментальных исследований УрО РАН (проект 18–10–2–37).

Ключевые слова: интенсивная пластическая деформация, кручение под высоким давлением, наноструктурирование, наноструктуры, границы зерен, гафниевая бронза

Библиография:

  1. Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk Nanostructured Materials: Fundamentals and Applications. – New Jersey : TMS, Wiley, Hoboken, 2014. – 440 p. – ISBN 978-1-118-09540-9.
  2. Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta Mater. – 2000. – Vol. 48. – P. 1–29. – DOI: 10.1016/S1359-6454(99)00285-2.
  3. Nanocrystalline grain structures developed in commercial purity Cu by low temperature cold rolling / Y. M. Wang, M. W. Chen, H. W. Sheng, E. Ma // Mater. Res. Soc. – 2002. – Vol. 17, no. 12. – P. 3004–3007. – DOI: 10.1557/JMR.2002.0436.
  4. On the structure and strength of ultra-fine-grained copper produced by severe plastic deformation / V. Y. Gertsman, R. Birringer, R. Z. Valiev, H. Gleiter // Scr. Met. & Mater. – 1994. – Vol. 30, no. 2. – P. 229–234. – DOI: 10.1016/0956-716X(94)90045-0.
  5. Erbel S. Mechanical properties and structure of extremely strainhardened copper // Metals Technol. – 1979. – Vol. 6, no. 1. – P. 482–486. – DOI: 10.1179/030716979803276363.
  6. Liao X. Z., Zhao Y. H., Zhu Y. T. Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion // J. Appl. Phys. – 2004. – Vol. 96, no. 1. – Р. 636–640. – DOI: 10.1063/1.1757035.
  7. Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes / F. Dalla Torre, R. Lapovok, J. Sandlin, P. F. Thomson, C. H. J. Davies, E. V. Pereloma // Acta Mater. – 2004. – Vol. 52, no. 16. – P. 4819–4832. – DOI: 10.1016/j.actamat.2004.06.040.
  8. Deformation behavior of ultra-fine-grained copper / R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov, B. Baudel // Acta Met. & Mater. – 1994. – Vol. 42, no. 7. – P. 2467–2475. – DOI: 10.1016/0956-7151(94)90326-3.
  9. Alexandrov I. V., Dubravina A. A., Kim H. S. Nanostructure formation in copper subjected to high pressure torsion // Defect & Diffus. Forum. – 2002. – Vol. 208–209. – P. 229–232. – DOI: 10.4028/www.scientific.net/DDF.208-209.229.
  10. Grain coarsening during compression of bulk nanocrystalline nickel and copper / S. Brandstetter, K. Zhang, A. Escuadro, Julia Weertman // Scr. Mater. – 2008. – Vol. 58, no. 1. – P. 61–64. – DOI: 10.1016/j.scriptamat.2007.08.042.
  11. Horita Z., Langdon T. G. Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion // Mater. Sci. & Eng. A. – 2005. – Vol. 410–411. – P. 422–425. – DOI: 10.1016/j.scriptamat.2007.08.042.
  12. Islamgaliev R. K., Chmelik F., Kuzel R. Thermal stability of submicron grained copper and nickel // Mater. Sci. & Eng. A. – 1997. – Vol. 237, no. 1. – P. 43–51. – DOI: 10.1016/S0921-5093(97)00107-X.
  13. Akhmadeev N. H., Kobelev N. P., Mulyukov R. R. The effect of heat treatment on the elastic and dissipative properties of copper with the submicrocrystalline structure // Acta Met. & Mater. – 1993. – Vol. 41, no 4. – P. 1041–1046. – DOI: 10.1016/0956-7151(93)90153-J.
  14. Structure and Thermal Stability of Cu after Severe Plastic Deformation / V. V. Popov, A. V. Stolbovskiy, E. N. Popova, V. P. Pilyugin // Defect and Diffusion Forum. – 2010. – Vol. 297–301. – P. 1312—1321. – DOI: 10.4028/www.scientific.net/DDF.297-301.1312.
  15. Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures / A. V. Stolbovsky, V. V. Popov, E. N. Popova, V. P. Pilyugin // Bulletin of the Russian Academy of Sciences: Physics. – 2014. – Vol. 78. – P. 908–916. – DOI: 10.3103/S1062873814090299.
  16. Effect of severe plastic deformation by high-pressure torsion on the structure and properties of copper and tin bronze / A. V. Stolbovsky, V. V. Popov, E. N. Popova, R. M. Falakhutdinov // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 5. – P. 13–22. – DOI: 10.17804/2410-9908.2017.5.013-022. – URL: http://dream-journal.org/issues/2017-5/2017-5_144.html (accessed: 19.02.2021)
  17. Shangina D. V., Bochvar N. R., Dobatkin S. V. Structure and properties of ultrafine–grained Cu–Cr alloys after high pressure torsion // Materials Science Forum. ‒ 2011. ‒ Vol. 667–669. ‒ P. 301–306. – DOI: 10.4028/www.scientific.net/MSF.667-669.301.
  18. Shangina D. V., Bochvar N. R., Dobatkin S. V. The effect of alloying with hafnium on the thermal stability of chromium bronze after severe plastic deformation // Journal of Materials Science. ‒ 2012. ‒ Vol. 47. ‒ P. 7764–7769. – DOI: 10.1007/s10853-012-6525-9.
  19. Structure and properties of Cu alloys alloying with Cr and Hf after equal channel angular pressing / D. V. Shangina, Yu. M. Maksimenkova, N. R. Bochvar, Vl. Serebryany, G. Raab, A. Vinogradov, Werner Skrotzki, S. Dobatkin // Advanced Materials Research. ‒ 2014. ‒ Vol. 922. ‒ P. 651–656. – DOI: 10.4028/www.scientific.net/AMR.922.651.
  20. Effect of deformation schedules and initial states on structure and properties of Cu–0.18%Zr alloy after high–pressure torsion and heating / S. V. Dobatkin, D. V. Shangina, N. R. Bochvar, Miloš Janečekc // Materials Science and Engineering A. ‒ 2014. ‒ Vol. 598. ‒ P. 288–292. – DOI: 10.1016/j.msea.2013.12.104.
  21. Improvement of strength and conductivity in Cu–alloys with the application of high–pressure torsion and subsequent heat–treatments / D. V. Shangina, J. Gubicza, E. Dodony, N. R. Bochvar, P. B. Straumal, N. Yu. Tabachkova & S. V. Dobatkin // Journal of Materials Science. ‒ 2014. ‒ Vol. 49. ‒ P. 6674–6681. – DOI: 10.1007/s10853-014-8339-4.
  22. High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation / S. V. Dobatkin, J. Gubicza, D. V. Shangina, N. R. Bochvara, N. Y. Tabachkova // Materials Letters. ‒ 2015. ‒ Vol. 153. ‒ P. 5–9. – DOI: doi.org/10.1016/j.matlet.2015.03.144.
  23. Dobatkin S. V., Bochvar N. R., Shangina D. V. Aging processes in ultrafine-grained low-alloyed bronzes subjected to equal channel angular pressing // Advanced Engineering Materials. ‒ 2015. ‒ Vol. 17. ‒ P. 1862–1868. – DOI: 10.1002/adem.201500099.
  24. Influence of microalloying with zirconium on the structure and properties of Cu–Cr alloy after high pressure torsion / D. V. Shangina, N. R. Bochvar, M. V. Gorshenkov, H. Yanar, G. Purcek, S. V. Dobatkin // Materials Science and Engineering A. ‒ 2016. ‒ Vol. 650. ‒ P. 63–66. – DOI: 10.1016/j.msea.2015.10.008.
  25. Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging / G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D. V. Shangina, S. V. Dobatkin // Materials Science and Engineering A. ‒ 2016. ‒ Vol. 649. ‒ P. 114–122. – DOI: 10.1016/j.msea.2015.09.111.
  26. Influence of alloying with hafnium on the microstructure, texture, and properties of Cu–Cr alloy after equal channel angular pressing / D. Shangina, Yu. Maksimenkova, N. Bochvar, Vl. Serebryany, Georgy Raab, A. Vinogradov, Werner Skrotzki & S. Dobatkin   // Journal of Materials Science. ‒ 2016. ‒ Vol. 51. ‒ P. 5493– 5501. – DOI: 10.1007/s10853-016-9854-2.
  27. Stolbovsky A. V., Popov V. V., Popova E. N. Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 118–132. – DOI: 10.17804/2410-9908.2015.5.118-132. – URL: http://dream-journal.org/issues/2015-5/2015-5_52.html (accessed: 27.06.2020).
  28. Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing / V. V. Popov, E. N. Popova, A. V. Stolbovsky, R. M. Falahutdinov // Physics of Metals and Metallography. – 2018. – Vol. 119. – P. 358–367. – DOI: 10.1134/S0031918X18040154.

PDF      

Библиографическая ссылка на статью

Evolution of the Structure of Annealed Hafnium Bronze Nanostructured by High Pressure Torsion / A. V. Stolbovsky, V. V. Popov, R. M. Falahutdinov, S. A. Murzinova // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 1. - P. 38-50. -
DOI: 10.17804/2410-9908.2021.1.038-050. -
URL: http://dream-journal.org/issues/2021-1/2021-1_292.html
(accessed: 21.01.2025).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2025, www.imach.uran.ru