Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 4

Все выпуски
 
2024 Выпуск 6
(в работе)
 
2024 Выпуск 5
 
2024 Выпуск 4
 
2024 Выпуск 3
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. B. Vandyshev

A SYSTEMATIC ANALYSIS OF THE PARAMETERS OF DISK-TYPE MEMBRANE-CATALYTIC DEVICES FOR PRODUCING HIGH-PURITY HYDROGEN FROM METHANE AND DIESEL FUEL

DOI: 10.17804/2410-9908.2020.4.06-27

Mathematical simulation is used to analyze systematically the results of testing an individual disk-type membrane-catalytic module for producing high-purity hydrogen from methane, with a capacity of about 0.3 m3H2/h, and the design data of a membrane-catalytic reactor based on 32 individual disk-type modules for producing high-purity hydrogen from diesel fuel, with a capacity of 7.45 m3H2/h.

The used mathematical model adequately and on a good quantitative level describes the experimental and design data known from the literature. In terms of the used model representations, possible ways of increasing both the capacity of disk-type membrane-catalytic devices and the efficiency of extracting high-purity hydrogen from the original hydrocarbon material are considered.

Keywords: mathematical modeling, membrane-catalytic systems, high purity hydrogen, methane, diesel-fuel oil

References:

  1. Gallucci F., Fernandez E., Corengia P., Van Sint Annalanda M. Recent advances on membranes and membrane reactors for hydrogen production (Review). Chemical Engineering Science, 2013, vol. 92, pp. 40–66. DOI: 10.1016/j.ces.2013.01.008.
  2. Dittmar B., Behrens A., Schödel N., Rüttinger M., Franco Th., Straczewski G., Dittmeyer R. Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes. Int. J. Hydrogen Energy, 2013, vol. 38 (21), pp. 8759–8771. DOI: 10.1016/j.ijhydene.2013.05.030.
  3. Shigarov A., Kirillov V., Landgraf I. Computational study of Pd-membrane CH4 steam reformer with fixed catalyst bed: Searching for a way to increase membrane efficiency. Int. J. Hydrogen Energy, 2014, vol. 39, no. 35, pp. 20072–20093. DOI: 10.1016/j.ijhydene.2014.10.018.
  4. Vandyshev A.B., Kulikov V.A. Analysis of parameters of high-purity hydrogen production from methane in a laboratory-scale membrane reformer with an ultrathin palladium membrane. Chemical and Petroleum Engineering, 2015, vol. 51, nos. 3–4, pp. 250–256. DOI: 10.1007/s10556-015-0032-1.
  5. Kirillov V.A., Shigarov A.B. Biofuels as a promising source of hydrogen for fuel cell power plants. Theoretical Foundations of Chemical Engineering, 2016, vol. 50, iss. 4, pp. 351–365. DOI: 10.1134/S0040579516040369.
  6. Vandyshev A.B., Kulikov V.A.  Estimate of high-purity hydrogen production efficiency in membrane-catalytic systems from steam reforming products of gasoline, kerosene, and diesel oil. Chemical and Petroleum Engineering, 2018, vol. 53, nos. 9–10, pp. 593–597. DOI: 10.1007/s10556-018-0386-2.
  7. Shirasaki Y., Tsuneki T., Ota Y., Yasuda I., Tachibana S., Nakajima H., Kobayashi K. Development of membrane reformer system for highly efficient hydrogen production from natural gas. Int. J. Hydrogen Energy, 2009, vol. 34, iss. 10, pp. 4482–4487. DOI: 10.1016/j.ijhydene.2008.08.056.
  8. Murav'ev L.L., Vandyshev A.B., Makarov V.M. Modeling of membrane extraction of hydrogen from the products of steam conversion of hydrocarbons. Theoretical Foundations of Chemical Engineering, 1999, vol. 33 (3), pp. 258–263.
  9. Vandyshev A.B. Analyzing the parameters of membrane catalytic systems for  extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling. Diagnostics, Resource and Mechanics of materials and structures (DREAM open-access journal), 2016, iss. 4, pp. 6–46. DOI: 10.17804/2410-9908.2016.4.006-045.   URL: https://dream-journal.org/DREAM_Issue_4_2016_Vandyshev_A.B._006_045.pdf
  10. Vandyshev A.B., Kulikov V.A. Analysis of the calculated parameters of a model membrane-catalytic converter for the production of high-purity hydrogen from methane. Chemical and Petroleum Engineering, 2018, vol. 54, nos. 1–2, pp. 31–37. DOI: 10.1007/s10556-018-0434-y.
  11. Vandyshev A.B., Kulikov V.A. Analysis of parameters and modes for producing high-purity hydrogen from natural gas in membrane-catalytic devices. Chemical and Petroleum Engineering, 2017, vol. 53, nos. 1–2, pp. 49–55. DOI: 10.1007/s10556-017-0293-y.
  12. Vandyshev A.B. & Kulikov V.A. Analysis of the Efficiency of a Pd/Ag Membrane with a Thickness of 2.25 Microns on a Porous Ceramic Substrate in a Laboratory Membrane Reactor. Chemical and Petroleum Engineering, 2019, vol. 55 (3), pp. 129–135. DOI: 10.1007/s10556-019-00592-y.
  13. Shigarov A.B., Кirillov V.A., Аmosov Y.I., Brayko A.S., Avakov V.B., Landgraf I.К., Urusov A.R., Jivulko S.A., Izmaylovich V.V.  Membrane reformer module with Ni-foam catalyst for pure hydrogen production from methane: Experimental demonstration and modeling. Int. J. Hydrogen Energy, 2017, vol. 42, no. 10, pр. 6713–6726. DOI: 10.1016/j.ijhydene.2016.12.057.
  14. Kirillov V.A., Shigarov A.B., Amosov Yu.I., Belyaev V.D., Gerasimov E.Yu. Production of Pure Hydrogen from Diesel Fuel by Steam Pre-Reforming and Subsequent Conversion in a Membrane Reactor. Petroleum Chemistry, 2018, vol. 58, no. 2, рp. 103–113. DOI: 10.1134/S0965544118020020.
  15. Vandyshev A.B., Kulikov V.A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane. Chemical and Petroleum Engineering, 2020, vol. 55, nos. 9–10, pр. 725–732. DOI: 10.1007/s10556-020-00686- y.
  16. Poristye pronitsaemye materialy: spravochnik [Porous Permeable Materials: Handbook, ed. by S.V Belov]. Moscow, Metallurgiya Publ., 1987, 335 p. (In Russian). 
  17. Zhivulko S.A., Avakov V.B., Landgraft I.K., Urusov A.R. Experience of practical implementation of hydrocarbon fuel conversion technology with hydrogen extraction from the reaction zone. Trudy V Vserossiyskoy konferentsii [The 5th All-Rissian Conference “Fuel Elements and Power Installation Based on Them” : Proceedings], Suzdal, 2018, pp. 62–64. (In Russian).
  18. Shigarov A.B., Kirillov V.A. Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts. Theor. Found. Chem. Eng., 2012, vol. 46, no. 2, pp. 97–107. DOI: 10.1134/S004057951202011X.
  19. Vandyshev A.B., Kulikov V.A. Evaluation of design parameters for a 32- module disk-type membrane-catalytic reactor for producing high-purity hydrogen from diesel fuel. Chemical and Petroleum Engineering, 2020, vol. 55, nos. 9–10, pр. 815–820. DOI: 10.1007/s10556-020-00698-8.
  20. Vandyshev A.B., Makarov V.M., Usova T.B. Analyzing the conditions of hydrogen extraction from multicomponent hydrogen-containing gas mixtures by means of triple diagrams С-Н-О. IMACH UrO RAN, 1998, deposited in VINITI 09.12.98. (In Russian).
  21. Lukyanov B.N., Andreev D.V., Parmon V.N. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal, 2009, vol. 154, p. 258–266. DOI: 10.1016/j.cej.2009.04.023.

А. Б. Вандышев

СИСТЕМНЫЙ АНАЛИЗ ПАРАМЕТРОВ МЕМБРАННО-КАТАЛИТИЧЕСКИХ УСТРОЙСТВ ДИСКОВОГО ТИПА ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ВОДОРОДА ИЗ МЕТАНА И ДИЗЕЛЬНОГО ТОПЛИВА

Методом математического моделирования проведен системный анализ результатов испытаний единичного мембранно-каталитического модуля дискового типа получения высокочистого водорода из метана производительностью около 0,3 м3Н2/ч и проектных расчетных данных мембранно-каталитического реактора на базе 32 единичных модулей дискового типа получения высокочистого водорода из дизельного топлива производительностью 7,45 м3Н2/ч.

Используемая математическая модель адекватно и на хорошем количественном уровне подтверждает известные в литературе экспериментальные и проектные данные. В рамках используемых модельных представлений рассмотрены возможные пути повышения как производительности мембранно-каталитических устройств дискового типа, так и экономичности извлечения высокочистого водорода из исходного углеводородного сырья.

Ключевые слова: математическое моделирование, мембранно-каталитические системы, высокочистый водород, метан, дизельное топливо

Библиография:

  1. Recent advances on membranes and membrane reactors for hydrogen production (Review) / F. Gallucci, E. Fernandez, P. Corengia, M. Van Sint Annalanda // Chemical Engineering Science. – 2013. – Vol. 92. – P. 40–66. – DOI: 10.1016/j.ces.2013.01.008.
  2. Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes / B. Dittmar, A. Behrens, N. Schödel, M. Rüttinger, Th. Franco, G. Straczewski, R. Dittmeyer // Int. J. Hydrogen Energy. – 2013. – Vol. 38. – P. 8759–8771. – DOI: 10.1016/j.ijhydene.2013.05.030.
  3. Shigarov A., Kirillov V., Landgraf I. Computational study of Pd-membrane CH4 steam reformer with fixed catalyst bed: Searching for a way to increase membrane efficiency // Int. J. Hydrogen Energy. – 2014. – Vol. 39, no. 35. – P. 20072–20093. – DOI: 10.1016/j.ijhydene.2014.10.018.
  4. Vandyshev A. B., Kulikov V. A. Analysis of parameters of high-purity hydrogen production from methane in a laboratory-scale membrane reformer with an ultrathin palladium membrane // Chemical and Petroleum Engineering. – 2015. – Vol. 51, nos. 3–4. – P. 250–256. – DOI:  10.1007/s10556-015-0032-1.
  5. Kirillov V. A., Shigarov A. B. Biofuels as a promising source of hydrogen for fuel cell power plants // Theoretical Foundations of Chemical Engineering. – 2016. – Vol. 50, iss. 4. – P. 351–365. – DOI: 10.1134/S0040579516040369.
  6. Vandyshev A. B., Kulikov V. A.  Estimate of high-purity hydrogen production efficiency in membrane-catalytic systems from steam reforming products of gasoline, kerosene, and diesel oil // Chemical and Petroleum Engineering. – 2018. – Vol. 53, nos. 9–10. – P. 593–597. – DOI: 10.1007/s10556-018-0386-2.
  7. Development of membrane reformer system for highly efficient hydrogen production from natural gas / Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi // Int. J. Hydrogen Energy. – 2009. – Vol. 34, iss. 10. – P. 4482–4487. – DOI: 10.1016/j.ijhydene.2008.08.056.
  8. Murav'ev L. L., Vandyshev A. B., Makarov V. M. Modeling of membrane extraction of hydrogen from the products of steam conversion of hydrocarbons // Theoretical Foundations of Chemical Engineering. – 1999. – Vol. 33 (3). – P. 258–263.
  9. Vandyshev A. B. Analyzing the parameters of membrane catalytic systems for  extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling // Diagnostics, Resource and Mechanics of materials and structures (DREAM open-access journal). – 2016. – Iss. 4. – P. 6–46. – DOI: 10.17804/2410-9908.2016.4.006-045. –  Available at: https://dream-journal.org/DREAM_Issue_4_2016_Vandyshev_A.B._006_045.pdf
  10. Vandyshev A. B., Kulikov V. A. Analysis of the calculated parameters of a model membrane-catalytic converter for the production of high-purity hydrogen from methane // Chemical and Petroleum Engineering. – 2018. – Vol. 54, nos. 1–2. – Р. 31–37. – DOI:  10.1007/s10556-018-0434-y.  
  11. Vandyshev A. B., Kulikov V. A. Analysis of parameters and modes for producing high-purity hydrogen from natural gas in membrane-catalytic devices // Chemical and Petroleum Engineering. – 2017. – Vol. 53, nos. 1–2. – P. 49–55. – DOI: 10.1007/s10556-017-0293-y.
  12. Vandyshev A. B. & Kulikov V. A. Analysis of the Efficiency of a Pd/Ag Membrane with a Thickness of 2.25 Microns on a Porous Ceramic Substrate in a Laboratory Membrane Reactor // Chemical and Petroleum Engineering. – 2019. – Vol. 55 (3). – P. 129–135. – DOI: 10.1007/s10556-019-00592-y.
  13. Membrane reformer module with Ni-foam catalyst for pure hydrogen production from methane: Experimental demonstration and modeling / A. B. Shigarov, V. A. Кirillov, Y. I. Аmosov, A. S. Brayko, V. B. Avakov, I. К. Landgraf, A. R. Urusov, S. A. Jivulko, V. V.  Izmaylovich // Int. J. Hydrogen Energy. – 2017. – Vol. 42, no. 10. – Р. 6713–6726. – DOI: 10.1016/j.ijhydene.2016.12.057.
  14. Production of Pure Hydrogen from Diesel Fuel by Steam Pre-Reforming and Subsequent Conversion in a Membrane Reactor / V. A. Kirillov, A. B. Shigarov, Yu. I. Amosov, V. D. Belyaev, E. Yu. Gerasimov // Petroleum Chemistry. – 2018. – Vol. 58, no. 2. – P. 103–113. – DOI: 10.1134/S0965544118020020.
  15. Vandyshev A. B., Kulikov V. A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane // Chemical and Petroleum Engineering. – 2020. – Vol. 55, nos. 9–10. – P. 725–732. – DOI: 10.1007/s10556-020-00686- y.
  16. Пористые проницаемые материалы : справочник / под ред. С. В. Белова. – М. : Металлургия, 1987. – С. 273–289.
  17. Опыт практической реализации технологии конверсии углеводородного топлива с отбором водорода из зоны реакции / С. А. Живулько, В. Б. Аваков, И. К. Ланграфт, А. Р. Урусов // Труды V Всероссийской конференции «Топливные элементы и энергоустановки на их основе», Суздаль, 2018. – С. 62–64.
  18. Shigarov A. B., Kirillov V. A. Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts // Theor. Found. Chem. Eng. – 2012. – Vol. 46, no. 2. – P. 97–107. – DOI: 10.1134/S004057951202011X.
  19. Vandyshev A. B., Kulikov V. A. Evaluation of design parameters for a 32- module disk-type membrane-catalytic reactor for producing high-purity hydrogen from diesel  fuel // Chemical and Petroleum Engineering. – 2020. – Vol. 55, nos. 9–10. – P. 815–820. – DOI: 10.1007/s10556-020-00698-8.
  20. Вандышев А. Б., Макаров В. М., Усова Т. Б.  Анализ условий извлечения водорода из многокомпонентных водородосодержащих газовых смесей с помощью тройных диаграмм С-Н-О / Ин-т машиноведения УрО РАН. – Екатеринбург, 1998. – 18 с. – Деп. в ВИНИТИ 09.12.98. – № 3610-В98.
  21. Lukyanov B. N., Andreev D. V., Parmon V. N. Catalytic reactors with hydrogen membrane separation // Chemical Engineering Journal. – 2009. – Vol. 154. – P. 258–266. – DOI: 10.1016/j.cej.2009.04.023.


PDF      

Библиографическая ссылка на статью

Vandyshev A. B. A Systematic Analysis of the Parameters of Disk-Type Membrane-Catalytic Devices for Producing High-Purity Hydrogen from Methane and Diesel Fuel // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 4. - P. 6-27. -
DOI: 10.17804/2410-9908.2020.4.06-27. -
URL: http://dream-journal.org/issues/2020-4/2020-4_284.html
(accessed: 21.12.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru