Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2018 Выпуск 6

2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. L. Kazakov, L. F. Spevak, O. A. Nefedova

ON THE NUMERICAL-ANALYTICAL APPROACHES TO SOLVING A NONLINEAR HEAT CONDUCTION EQUATION WITH A SINGULARITY

The paper deals with the construction and study of solutions to a nonlinear heat conduction equation in the case of the power-law dependence of the thermal conductivity coefficient on temperature. The parabolic type of the equation degenerates in the case of the zero value of the required function. It acquires some properties typical of first-order equations; particularly, it has solutions with a free boundary in the form of a heat wave propagating at a finite velocity over the cold front. Two types of the boundary conditions are discussed: the specified law of motion of the heat front and the boundary condition specified on a static manifold, initiating a heat wave. A comparative analysis of our developed approaches to solving the boundary value problems is made; namely, local analytical solutions are constructed by the power series method, and numerical-analytical solutions are constructed based on the boundary element method on a specified finite time interval. For some particular cases, the construction reduces to the Cauchy problem for a second-order ordinary nonlinear differential equation with a singularity before the higher derivative. The solution of this equation enables a partially self-similar solution to be constructed for the initial problem. The advantages and applicability of each approach are described. Examples are considered.

The work was partially supported by the Complex Program of UB RAS (project No. 18-1-1-5) and the RFBR, project No. 16-01-00608.

Keywords: nonlinear heat conduction equation, power series, boundary element method, partially self-similar solution

А. Л. Казаков, Л. Ф. Спевак, О. А. Нефедова

О ЧИСЛЕННО-АНАЛИТИЧЕСКИХ ПОДХОДАХ К РЕШЕНИЮ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ С ОСОБЕННОСТЬЮ

Работа посвящена построению и исследованию решений нелинейного уравнения теплопроводности в случай степенной зависимости коэффициента теплопроводности от температуры. Параболический тип рассматриваемого уравнения вырождается в случае нулевого значения искомой функции. При этом оно приобретает некоторые свойства, характерные для уравнений первого порядка, в частности, обладает решениями со свободной границей типа тепловой волны, распространяющейся по холодному фону с конечной скоростью. Рассматриваются два типа краевых условий: заданный закон движения теплового фронта; краевой режим, заданный на неподвижном многообразии, инициирующий тепловую волну. Проводится сравнительный анализ подходов к решению указанных краевых задач, разработанных авторами: методом степенных рядов строятся локально-аналитические решения; на основе метода граничных элементов на заданном конечном промежутке времени строятся численно-аналитические решения. При этом для отдельных частных случаев построение сводится к задаче Коши для обыкновенного нелинейного дифференциального уравнения второго порядка с особенностью перед старшей производной. Решение этого уравнения позволяет построить для исходной задачи частично-автомодельное решение. Описаны преимущества и области применимости каждого из подходов. Рассмотрены примеры.

Благодарности: Работа выполнена при частичной поддержке Комплексной программы УрО РАН, проект № 18-1-1-5, и РФФИ, проект № 16-01-00608.

Ключевые слова: нелинейное уравнение теплопроводности, степенной ряд, метод граничных элементов, частично-автомодельное решение

PDF        

 

импакт-фактор

 

МРДМК 2018 title=
МРДМК 2018

ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения Уральского отделения Российской академии наук
Главный редактор:  Э.C. Горкунов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2019, www.imach.uran.ru